T-720-ATAI-2016: Advanced Topics in Artificial Intelligence Exercise 5: Final Project

Advanced Topics in Artificial Intelligence

T1-720-ATAI-2016

EXERCISES (Final Project)

In the final programming exercise of this course you will pair up to do some seed
programming and teaching of an AGI-aspiring cognitive architecture (NARS).

Download OpenNARS

OpenNARS is an open source implementation of NARS. Download version 1.7.0 from
https://drive.google.com/folderview?id=0B874Yige07tBUK5LSUtxSGY0eVk&usp=sharing
. Note that you can also download the source code here, but if you’re going to do that, it
might be better to get it from GitHub: https://github.com/opennars/opennars. You will
not need the source code for this exercise, but you should probably check out the wiki:
https://github.com/opennars/opennars/wiki.

When you have unzipped the file, run OpenNARS_GUI.jar to start the program and
start the interactive session by clicking the OpenNARS button. Resetting the memory
does not appear to work, so if you want that, you’ll have to restart the program.

To enter a sentence, press Ctrl + Enter. Documentation about an older but similar
interface is here: https://github.com/opennars/opennars/wiki/Graphical-User-Interface.
The Narsese grammar is here:
https://github.com/opennars/opennars/wiki/Input-Output-Format.

Tip: You can’t copy text that you’ve typed into the OpenNARS GUL. It is probably a good
idea to write your commands somewhere else and then paste them into the GUI, so that
you don’t lose any work.

Your final project

The final programming assignment of this course is a bit different from the earlier
ones. Due to the size, we ask you to pair up in order to somewhat mitigate the
workload. This assignment is very open, and we will only give you fairly high level
descriptions of the tasks that you should make NARS learn:

1 Kristinn R. Thérisson & Jordi Bieger

https://drive.google.com/folderview?id=0B8Z4Yige07tBUk5LSUtxSGY0eVk&usp=sharing
https://github.com/opennars/opennars
https://github.com/opennars/opennars/wiki
https://github.com/opennars/opennars/wiki/Graphical-User-Interface
https://github.com/opennars/opennars/wiki/Input-Output-Format

T-720-ATAI-2016: Advanced Topics in Artificial Intelligence Exercise 5: Final Project

- Diagnosing, treating and preventing disease

Deali »]

—NaturaHanguage proeessing

—Gameplayng

There are roughly two different ways in which NARS can acquire a piece of knowledge:
you can tell it directly, or the system can learn it. In this assignment, you will do both.
In the first stage, you should think about the rules you want NARS to have. Then in the

second stage, you'll start from the bare minimum and try to teach NARS as many
interesting rules as possible by giving examples and asking questions. Example:

Part 1:
// transitivity: if x < y && y < z then x < z
<(&&, <$x --> (/, smaller, , $y)>, <Sy --> (/, smaller, , $z)>) ==> <§x -->

(/, smaller, , $z)>>.

<A --> (/, smaller, , B)>.
<B --> (/, smaller, , E)>.
<A --> (/, smaller, , E)>?

Part 2:

<A --> (/, smaller, , B)
<A --> (/, smaller, , C)
<A --> (/, smaller, , D)
//<A --> (/, smaller,

\4

>,

>,

>,

, B

<B --> (/, smaller, , C)>.
<B --> (/, smaller, , D)>.
<B --> (/, smaller, , E)>.
<C --> (/, smaller, , D)>.
<C --> (/, smaller, , E)>.
<D --> (/, smaller, , E)>.

<A --> (/, smaller, , E)>?
<(&&, <$x --> (/, smaller, , $y)>, <$y --> (/, smaller, , $z)>) ==> <$x -->
(/, smaller, , $z)>>? // this is actually too complex to learn

Diagnosing, treating and preventing disease

There are people, diseases, symptoms, treatments and vaccinations. Symptoms,
treatments and vaccinations apply to diseases. When somebody exhibits symptoms
related to a disease, it increases the likelihood that they have it. When somebody has
been vaccinated for a disease, they will almost certainly not get it in the future. When
somebody with a disease is treated for it, they will (probably) no longer have that

2 Kristinn R. Thérisson & Jordi Bieger

T-720-ATAI-2016: Advanced Topics in Artificial Intelligence Exercise 5: Final Project

disease or its symptoms after a while.

You should define actual people, diseases, etc. and not just their categories. Create
multiple diseases which each have multiple (partially overlapping) symptoms some of
the time (flu doesn’t always cause muscle aches).

Define actions for NARS to administer treatments and vaccines, and give it the goal of
letting nobody have a disease. Can you get NARS to start treating sick people and
vaccinating non-sick ones?

Programming Narsese

You should first consider what knowledge and rules the system should eventually
have. Define these rules in Narsese. Work incrementally, start simple, and continually
test your rules. For instance, if you define the transitivity rule above, then you should
test it out with some concrete instances. Next, you could define the non-symmetry rule
<<(*, smaller, $x, $y)> <=> (--, <(*, smaller, Sy, $x)>)>.,testthat out, and then
test the combination.

Document your code extremely well. Say what you're doing and why. Record the time
steps at which you're putting things into the system, and the timesteps (and truth
values) of answers to questions and actions. It may be difficult to get NARS to do very
complicated, many-step, many-variable inferences. It may help to break things up into
more, smaller inference chains. If you can't get NARS to do something, report what you
did, what you expected, what really happened and what you think the problem is.

You have quite a bit of freedom in this assignment. Make sure that you use all 8 levels
of NAL, as well as judgments, questions and goals. You’re encouraged to

Teaching NARS

Now that you have an idea of the knowledge NARS should learn, think about how you
could teach these things if you could not directly encode them. Use as little starting
knowledge as possible, and then use examples and questions to teach these concepts.

Again, you should start simple, and you don’t have to take this all the way up to the
most complex rules. If you can’t get NARS to learn a general rule (such as transitivity
above), then at least see if you can get it to generalize to some other examples. Try
using shaping/chaining and the Socratic method to nudge NARS in the right direction
and allow it to make smaller steps. If you can’t get it to work, do the same as above:

3 Kristinn R. Thérisson & Jordi Bieger

T-720-ATAI-2016: Advanced Topics in Artificial Intelligence Exercise 5: Final Project

document what you tried, why/how you thought it would work, what really happened
and what you think the problem is. In some cases you may want to write a separate
program to generate a lot of input data for NARS to learn from (e.g. disease/symptom
data for a lot of people, summation outcomes for a lot of numbers, a lot of sentences, or
a lot of game enemy encounters).

Submit your solutions

Submit a zip file named “ex5_" followed by your names “.zip”. Include all files that you
wrote for this exercise. Depending on how you work, it may be a single text file with
the Narsese code and lots of comments, or a main file (pdf/docx/txt) where you
describe what you did and one or more Narsese files that you refer to. Please write
your full name and kennitala into the file. Submit it in MySchool.

4 Kristinn R. Thérisson & Jordi Bieger

