



#### T-720-ATAI-2016 Advanced Topics in Artificial Intelligence: **Reinforcement Learning**

Jordi Bieger

School of Computer Science | Center for Analysis and Design of Intelligent Agents

### Intelligence and learning

- General intelligence is the ability to achieve a wide variety of goals in complex environments, even when they were not anticipated.
- Learning is a long term change in knowledge, skills or behavior that comes from experience or reflection.





#### Purpose

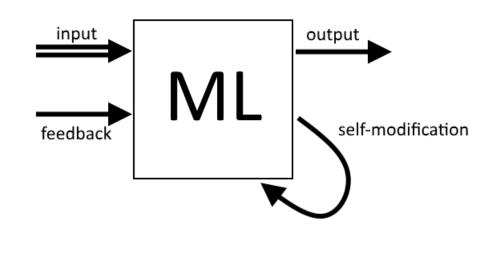
- Behavior can only said to be intelligent if there is some kind of purpose or reason driving it.
- The purpose of learning, in turn, is to better satisfy such a drive in the future.
- The goal of machine learning then, is to tune the algorithm's parameters (or code) in such a way that future performance is improved.
- However, in many settings current performance, and lasting consequences should not be neglected.





## Machine learning

• A machine learning agent receives some regular inputs, as well as possibly some extra feedback.

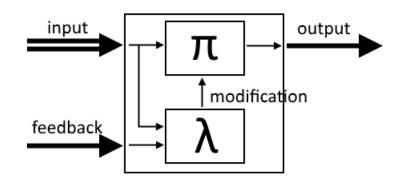






# Machine learning

• The learning algorithm then uses this feedback to adjust the policy that computes the output.

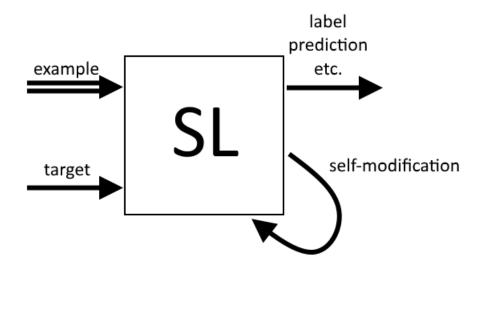






# Supervised learning

 In supervised learning the feedback is usually the output that should have accompanied the input: i.e. the ground truth.

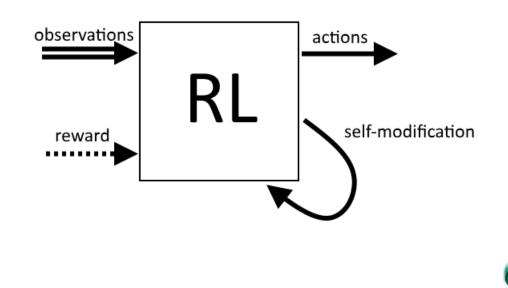






### **Reinforcement learning**

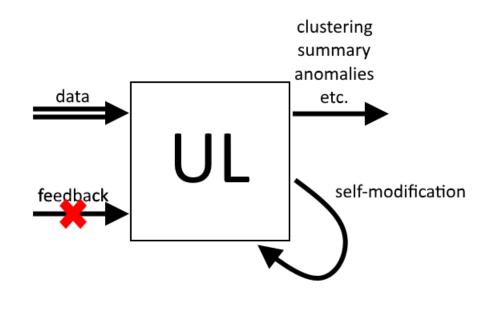
 In reinforcement learning, the feedback merely consists of a scalar value that resembles a reward (or punishment).





## **Unsupervised learning**

 In unsupervised learning, there is no external feedback. The objective function takes only data into account.







# Machine learning paradigms

|              | Supervised | Reinforcement | Unsupervised |
|--------------|------------|---------------|--------------|
| Feedback     | target     | reward        | none         |
| Clarity      | yes        | no            | yes          |
| Online       | rarely     | yes           | sometimes    |
| Stochastic   | rarely     | regularly     | rarely       |
| Delays       | no         | yes           | -            |
| Distribution | i.i.d.     | sequential    | i.i.d.       |
| Autonomous   | no         | mostly        | yes          |





# **Reinforcement learning and AGI**

- Reinforcement learning is often considered the most natural paradigm for AGI.
  - Supervised learning requires too much supervision.
  - Unsupervised learning is hard to evaluate/control externally.
  - Reinforcement learning is a common paradigm in nature.
  - It makes it relatively easy to specify tasks that we don't know how to solve, and even give hints.
  - The rewards correspond roughly to an innate drive that all intelligent systems must have.
  - Reinforcement learning deals with autonomy, delayed rewards, online learning and active learning while requiring no initial information about the task-environment.



# Markov decision process (MDP)

- Task environments are usually modelled as Markov decision processes in the RL paradigm.
- An MDP contains:
  - a set of environment states  $\mathcal{S}$
  - a set of actions  $\mathcal{A}$
  - (optionally) an action availability function  $\mathcal{A}(s)$
  - a transition function  $\mathcal{T}$
  - a reward function  $\mathcal R$





# Synchronous interaction

- Interaction between the agent and environment is usually assumed to be synchronous.
  - 1. The agent senses the state of the environment.
  - 2. The agent responds with an action.
  - 3. The environment computes the next state and a reward.
  - 4. The reward is communicated to the agent.
  - 5. And the cycle repeats...





### Determinism vs. stochasticity

- The transition and reward functions can either be deterministic or stochastic.
- Deterministic functions directly compute the next state or the reward, whereas stochastic functions compute distributions over next states and rewards.
- Stochastic transition functions are often notated as functions that take three parameters:  $\mathcal{T}(s, a, s') = \mathbb{P}(S_{t+1} = s' | S_t = s \land A_t = a).$





### **Reward sources**

- Rewards can be influenced from different sources:
  - R(s): e.g. in chess you can judge how well you're doing solely from the board positions.
  - R(s,a) or rarely R(a): e.g. in our mouse environment we might say that every action takes a certain amount of energy. We could augment it by adding actions to sprint or jump that might use more energy.
  - R(s,a,s'): e.g. in a coin flipping game where you have to bet if the next flip will be the same as the last.





#### Markov property

- The Markov property says that the current state contains all of the relevant information about the history of the world in order to determine the next state and reward.
- "the future is independent of the past given the present"

$$- \mathbb{P}(S_{t+1}|S_t, A_t) = \mathbb{P}(S_{t+1}|S_0, A_0, \dots, S_t, A_t)$$





# Goal of learning

- To find a policy that optimizes future expected reward.
- Approaches:
  - Policy search:  $\pi(s) \rightarrow a$
  - Value iteration:  $Q(s, a) \rightarrow v$
  - Model-based:  $T(s, a) \rightarrow s'$  and  $R(s, a) \rightarrow r$
- Bellman equations:
  - $V_{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(a|s) Q_{\pi}(s,a)$
  - $Q_{\pi}(s,a) = \mathbb{E}_{\pi}[r + \gamma Q_{\pi}(s',a')]$





#### **Temporal difference learning**

• Greedy policy:

$$-\pi(a|s) = f(x) = \begin{cases} 1, \ a = \max_{a^*} Q(s, a^*) \\ 0, \ otherwise \end{cases}$$

• Q-learning (off-policy):

- 
$$Q(s,a) \xrightarrow{\Delta} \alpha \left( r + \gamma \max_{a'} Q(s',a') \right)$$





### Exploration vs. exploitation

• ε-greedy policy:

$$- \pi(a|s) = \begin{cases} 1 - \epsilon, \ a = \max_{a^*} Q(s, a^*) \\ \frac{\epsilon}{|\mathcal{A}(s)|}, & otherwise \end{cases}$$





# On-policy vs. off-policy

• Q-learning (off-policy):

$$- Q(s,a) \xrightarrow{\Delta} \alpha \left( r + \gamma \max_{a'} Q(s',a') \right)$$

• Sarsa (on-policy):

- 
$$Q(s,a) \xrightarrow{\Delta} \alpha (r + \gamma Q(s',a'))$$





#### Pros and cons

- On-policy vs. off-policy?
- Exploration vs. exploitation?
- Markov decision processes?
- Reinforcement learning?





### **Questions?**





