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1. Truth-values in IL – 1. 

There is ideal experience	𝐾 in IL – 1, using the reasoning rules in IL – 1 (mainly the deducCon 

rule), we can get the transiCve closure 𝐾∗. Here, if we say an inheritance, say 𝑆 → 𝑃 is true, 

when 𝑆 → 𝑃 ∈ 𝐾∗. 

For example, if we have 𝐾 = {𝐴 → 𝐵, 𝐵 → 𝐶}, we get 𝐾∗ = {𝐴 → 𝐵, 𝐵 → 𝐶, 𝐴 → 𝐶}, and so 

𝐴 → 𝐶 is true, and 𝐴 → 𝐷 is false. 

2. Based on the meaning of an inheritance relaCon, if 𝑆 → 𝑃 is true, then we usually say “𝑆 is a 

kind of 𝑃”, or “𝑆 is a specificaCon of 𝑃”, or “𝑃 is a generalizaCon of 𝑆”. But if we want to discuss 

to what extent an inheritance is true, we assume the truth-value definiCon of IL – 1 is not 

valid anymore, since between true and false, we can have “kind of true” and “kind of false”, 

which makes the binary truth-value a conCnuous one. The reason why we introduce a 

conCnuous truth is in our daily life, we usually don’t use (or cannot have) such axioms. Say “it 

is going to rain”, what is the truth? No maTer what it is, it cannot be an absolute “true” or 

“false”, but something in the middle. 

To Talk about conCnuous truth-values, we may start with seeing how to get them from set 

theory. If we interpret 𝑆, 𝑃 as sets and say 𝑆 = {𝐴, 𝐵, 𝐶}, 𝑃 = {𝐵, 𝐶, 𝐷}, then for 𝐵, 𝐶, they can 

be used for supporCng evidence for “𝑆 is a kind of 𝑃” (note that I did not use 𝑆 ⊆ 𝑃, since I 

am NOT talking about set theory, but use it to explain inheritance) (since 𝐵, 𝐶 are both in 𝑆 

and 𝑃). But for 𝐴, since 𝐴 ∈ 𝑆, but 𝐴 ∉ 𝑃, hence 𝐴 is negaCve evidence for “𝑆 is a kind of 𝑃”. 

For 𝐷, it is not useful in judging whether “𝑆 is a kind of 𝑃” is true or false. Assume 𝑆 is a set 

of birds, and 𝑃 is a set of flying beings. Then 𝐵, 𝐶 are birds and flying beings, and they are 

posiCve evidence; 𝐴 is a bird but not a flying being (penguin), and it is negaCve evidence; 𝐷 

is not a bird but a flying being (airplane), and it will not contradict with “bird is a kind of flying 

being”. Therefore, in discussing whether an inheritance is true, we will need evidence, which 



can be separated in 3 groups: 1) posiCve evidence, 2) negaCve evidence, 3) unrelated 

evidence (like 𝐷 above). 

3. From the above example, it seems that we can use set theory (subset relaConships) to discuss 

conCnuous truth-values, but we will not do it, since set theory is purely for extensional 

informaCon (specificaCons), and intenConal evidence (generalizaCons) is also very important 

in deciding the truth-value. 

For example, for an inheritance “brain → computer”, which is usually not true, but we can sCll 

find evidence “computer → can_store_knowledge” and “brain → can_store_knowledge” to 

say it is kind of true.  

Or we know cats and dogs are kind of similar (since they are popular pets, intenConal), but if 

we find a set for cat and another set for dog, we can hardly find “cat is a kind of dog”, “dog is 

a kind of cat” true using set theory (since it is impossible for something being cat and dog at 

the same Cme, extensional), and say nothing to their similarity. 

Therefore, in NAL, we use the following schema of evidence. Among them, green ones are 

posiCve, red ones are negaCve, and gray ones are unrelated. 

 



For any concept, we use 𝑆"  to represent its extension (specificaCon), ∀𝑥, 𝑥 ∈ 𝑆" ≔ 𝑥 → 𝑆. 

And 𝑆#  to represent its intenCon (generalizaCon), ∀𝑥, 𝑥 ∈ 𝑆# ≔ 𝑆 → 𝑥 . Then we say the 

posiCve evidence for 𝑆 → 𝑃 is (𝑆" ∩ 𝑃") ∪ (𝑆# ∩ 𝑃#); the extensional negaCve evidence is 

𝑆" − 𝑃" ; the intenConal negaCve evidence is 𝑃# − 𝑆# . We say the (relaCve) number of 

posiCve evidence is 𝑤$ , negaCve evidence is 𝑤% . Then the frequency of 𝑆 → 𝑃  is 𝑓 =

𝑤$/(𝑤$ +𝑤%) ≔ 𝑤$/𝑤. 

4. Assume there is 1 posiCve and negaCve evidence for 𝑆 → 𝑃, and so its frequency if 0.5. If for 

some reason (inpu`ng new informaCon or ge`ng results from reasoning), new evidence is 

added to 𝑆 → 𝑃. If this is posiCve evidence, then its frequency becomes 0.66, and 0.33 if it is 

negaCve. But I have no idea whether this new evidence is posiCve or negaCve, since it will be 

added in the future. For the above case, if you assume 𝑓 > 0.5 to be “kind of true” and 𝑓 <

0.5 to be “kind of false”, then that inheritance is not stable. Since one unknown case may 

completely change your assessment to it. But if there are 10 posiCve evidence and 10 

negaCves at the beginning, in dealing with one unknown case, the upper bound (𝑢) of its 

frequency can be 0.52, and the lower bound (𝑙) will be 0.47, which is more stable. 

That is to say, except for the proporCon of posiCve evidence, we also need to consider the 

amount of total evidence. Therefore, we introduced confidence 𝑐 = 𝑤/(𝑤 + 𝑘), in which 𝑘 

stands for “in dealing with 𝑘 unknown cases”. 

As a result, in NAL, we have 3 exchangeable representaCons of truth, 1) 𝑤$, 𝑤%, 2)	𝑓, 𝑐, 3)	

𝑢, 𝑙 . They are theoreCcally equivalent, but we may switch among them in the following 

discussion to make the explanaCon natural. 

5. From here, we may receive some quesCons, “in discussing the conCnuous truth-value of 

inheritance, we used posiCve evidence and negaCve evidence, which are Boolean”, so that 

the conCnuous truth-value is built upon Boolean truth-values, and so it is not necessary. This 

quesCon can also be asked in talking about the truth-value using set theory, since though we 

agree 𝑆 → 𝑃  to some extent, it is based on the members of set 𝑆, 𝑃 , and membership 

relaConship is also Boolean. 

But in NAL, “whether this is posiCve/negaCve evidence” is also to some extent. Assume we 

are talking  “bird is a kind of white being”, then as human we know swan can be used to 



support it. But we also know not all swans are white. In this case “swan” as posiCve evidence, 

is not 100% posiCve. And that is why we don’t design 𝑤$, 𝑤% as sets containing evidence 

(though in the following discussion to make examples simpler, I will sCll use it if no confusions 

will be made), but just numbers represenCng the relaCve amount. Otherwise, we can just 

have 100% posiCve evidence, and 100% negaCve evidence, which is not flexible. 

6. Revision rule 

Assume there is an inheritance 𝑆 → 𝑃, and we have evidence from 𝑤$ = {𝐴}, 𝑤 = {𝐴, 𝐵, 𝐶} 

(here you may think 𝑤$ = 1,𝑤 = 3, but I make it specifically where these 1 and 3 are from). 

And in another situaCon, I got the same sentence, 𝑆 → 𝑃, but it has evidence 𝑤$ = {𝑋}, 𝑤 =

{𝑋, 𝑌, 𝑍}. Then we know we can combine these two sets of evidenCal and gain 𝑆 → 𝑃 more 

confidence. 

Therefore, for the same inheritance, if it has two truth-values from 𝑤&$, 𝑤& and 𝑤'$, 𝑤', we 

can combine them as 𝑤$ = 𝑤&$ +𝑤'$, 𝑤 = 𝑤& +𝑤' by the revision rule. 

Note that by using the revision rule, the premises are not canceled, you can s;ll use the old 

premise to do other reasoning. 

7. Choice rule 

But there is a problem here, since 𝑤$, 𝑤% are numbers, we don’t know where these numbers 

are from, if 𝑤&$ = {𝐴}, 𝑤& = {𝐴, 𝐵, 𝐶}, 𝑤'$ = {𝐴}, 𝑤' = {𝐴, 𝑌, 𝑍}, combining them may use 

the same evidence twice. Therefore, we define evidenCal base to avoid such issues. An 

inheritance has evidenCal base just including itself at the beginning, and all derived 

inheritances will have the evidenCal base as the union of the premises. If the intersecCon of 

the two premises’ evidenCal bases is not empty, a reasoning cannot be carried out. This 

results in some “look the same” inheritances with different truth-values and cannot be revised. 

In this case, to refer to the inheritance, we will use the choice rule to pick the one with the 

highest confidence. 

8. DeducCon rule 

In NAL, the deducCon is represented as 𝐵 → 𝐶 < 𝑓&, 𝑐& >, 𝐴 → 𝐵 < 𝑓', 𝑐' >⊢ 𝐴 → 𝐶 <

𝑓, 𝑐 >, here are two problems: 1) to make it natural, we will use 𝐴 → 𝐵, 𝐵 → 𝐶 as the premise, 

but why we choose 𝐵 → 𝐶, 𝐴 → 𝐵; 2) how the truth of 𝐴 → 𝐶 is defined. 



To answer the first quesCon, we need to make it clear what is different from posiCve/negaCve 

evidence against unrelated evidence. We may see when 𝐵 → 𝐶 is not true, we can only talk 

about unrelated evidence, and so to use this rule, we must make sure 𝐵 → 𝐶 is “kind of true”, 

so we put it in the first place. 

 
To answer the second quesCon, we need to consider the same rule in IL – 1, “𝐴 → 𝐶 is true 

when 𝐵 → 𝐶, 𝐴 → 𝐵 are both true”, therefore, we say 𝑓 = 𝑓&𝑓'. For confidence, only posiCve 

evidence is used (since we cannot separate intenConal and extensional negaCve evidence), 

so 𝑐 = 𝑓&𝑐&𝑓'𝑐'. 

9. AbducCon rule 

Write the deducCon rule first, 𝐵 → 𝐶, 𝐴 → 𝐵 ⊢ 𝐴 → 𝐶, then exchange the conclusion and the 

second premise, we get 𝐵 → 𝐶, 𝐴 → 𝐶 ⊢ 𝐴 → 𝐵, and then rename 𝐵, 𝐶 with each other, and 

we get the abducCon rule	𝐶 → 𝐵 < 𝑓&, 𝑐& >, 𝐴 → 𝐵 < 𝑓', 𝑐' >⊢ 𝐴 → 𝐶 < 𝑓, 𝑐 >. 

But the analyzing of its truth is different from above, since here these two premises make 𝐵 

intenConal posiCve/negaCve evidence. 



 
Therefore, 𝑤$ = 𝑓&𝑐&𝑓'𝑐', 𝑤% = 𝑓&𝑐&(1 − 𝑓')𝑐' . For similar reasons, we put 𝐶 → 𝐵  in the 

first place. 

Note that, 𝑐 = 𝑤/(𝑤 + 𝑘) = 𝑓&𝑐&𝑐'/(𝑓&𝑐&𝑐' + 𝑘), and 𝑓&𝑐&𝑐' ≤ 1, 𝑘 ≥ 1, so for this rule, 

the conclusion will always have confidence smaller than 0.5 (unreliable), so it is called a “weak” 

rule. Such rules are usually not allowed in many mathemaCcal logic reasoning systems, but in 

NAL, we can sCll make it since it ACTUALLY uses a part of the evidence.  

10. InducCon rule 

Like the abducCon rule, but we exchange the conclusion with the first premise then rename 

it, and we will get 𝐵 → 𝐶 < 𝑓&, 𝑐& >,𝐵 → 𝐴 < 𝑓', 𝑐' >⊢ 𝐴 → 𝐶 < 𝑓, 𝑐 >. 

  
If it is from the same reasoning like in deducCon, we should put 𝐵 → 𝐴 in the first place, but 

to keep the way how it is derived from deducCon (like inducCon), we will put it in the second 

place. But we cannot use this rule when 𝐵 → 𝐴 is “kind of false”. 

11. Conversion rule 



Consider using abducCon rule in this way, by replacing 𝐴 with 𝐵, we have 𝐶 → 𝐵, 𝐵 → 𝐵 ⊢

𝐵 → 𝐶, and since 𝐵 → 𝐵 is a tautology, its truth is 𝑓 = 1, 𝑐 = 1, and we can ignore it. Then 

this rule becomes	𝐶 → 𝐵 ⊢ 𝐵 → 𝐶. 

12. ExemplificaCon rule 

This can be viewed as 1) deducCon first, 2) conversion, but it is not. Since if so, 1) we should 

have the rule like 𝐵 → 𝐶, 𝐴 → 𝐵 ⊢ 𝐶 → 𝐴, but it is 𝐴 → 𝐵, 𝐵 → 𝐶 ⊢ 𝐶 → 𝐴. And 2) its truth 

should be 𝑓 = 1, 𝑐 = 𝑓&'𝑓''𝑐&𝑐'/(𝑓&'𝑓''𝑐&𝑐' + 𝑘), but its definiCon is 𝑤$ = 𝑓&𝑓'𝑐&𝑐', 𝑤% =

0, so 𝑓 = 1, 𝑐 = 𝑓&𝑓'𝑐&𝑐'/(𝑓&𝑓'𝑐&𝑐' + 𝑘). 

Therefore, we’d beTer take it as a stand-alone reasoning rule, considering the conversion rule, 

it will just use the posiCve evidence of premises, and by deducCon rule, the posiCve evidence 

should be 𝑓&𝑓'𝑐&𝑐'. 


