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Abstract. The concept of ‘meaning’ has long been a subject of philos-
ophy and people use the term regularly. Theories of meaning detailed
enough to serve as blueprints in the design of intelligent artificial sys-
tems have however been few. Here we present a theory of foundational
meaning creation – the phenomenon proper – sufficiently broad to apply
to natural agents yet concrete enough to be implemented in a running
artificial system. The theory states that meaning generation is a process
bound in the present now, resting on the concept of reliable causal mod-
els. By unifying goals, predictions, plans, situations and knowledge, it
explains how ampliative reasoning and explicit representations of causal
relations participate in the meaning generation process. According to the
theory, meaning and autonomy are two sides of the same coin: Meaning
generation without autonomy is meaningless; autonomy without mean-
ing is impossible.

Keywords: Meaning · Autonomy · Knowledge · Information ·
Generality · General Machine Intelligence

1 Introduction

The question of why anything can or should ‘mean’ anything to anyone seems
to belong in the set of fundamental questions that scientific and philosophical
pursuits should aim to provide an adequate answer to. Surprisingly, in spite of
thousands of years of analytical philosophy and close to 200 years of psychological
research on this concept, no sufficiently detailed and prescriptive theory exists
that can help us build machines that think. Our view is that artificial intelligence,
or at the very least its sub-field of general machine intelligence, calls for this
question to be addressed.

Philosophy uses the term foundational meaning to refer to the basic core
concept of meaning [7], as in e.g., “the guitar that your father gave you has
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‘a lot of meaning’ to you,” and when a loved one says you “mean everything”
to them, as well as more basic experiences like breaking out in a cold sweat
when being robbed at gunpoint: The meaning of such situations to you – if you
are the one having the experience – is ‘foundational.’ This use of the term is
different from its use when talking about symbols, signs, and language, which
has been called ‘semantic’ meaning. If a parrot were to squawk at you “I’m gonna
MESS you up!!”, our guess is that you would not be frightened. This is because
while you generate semantic meaning for the vocal phrase – which happens to
constitute a threat – to you the threat itself has no foundational meaning. The
only foundational meaning you generate is of ‘a parrot making an empty threat.’
A parrot capable of messing up a human is a rather frightening thought; if the
situation seems funny, it is due to the sharp contrast between the semantic
and the foundational meanings. Generating semantic meaning of e.g. text is a
classification task; generating foundational meaning involves much more.

Here we present a computational theory of foundational meaning. The theory
already has a rudimentary implementation in a cognitive architecture [9,13].1 In
this paper we describe the theory and detail its foundation and formalisms.

2 Related Work

The study of “meaning” has been a central topic in various disciplines, including
philosophy, linguistics, and cognitive sciences. Philosophic study of meaning goes
back thousands of years: disquisitions and formulations on the nature of the
meaning of words, symbols and ideas can already be found in the works of
ancient Greek philosophers such as Socrates, Plato and Aristotle [12].

We agree with philosopher David Lewis [7] that it is important to distinguish
Foundational and Semantic theories of meaning. The former refers to why any-
thing should ’mean’ anything to someone, while the latter refers to translation
of some symbol structure into a pragmatic knowledge structure (e.g. the mes-
sage “Don’t step on the grass”). In our theory they differ by their requirements
of information inclusion (the former requires reference to the active goals and
plans of the mind that generates the meaning, while the latter may not). We see
these two areas of meaning as sharing a large number of features, which we will
detail in the next sections.

As mentioned, our theory is about foundational meaning, so any related
theory that does not address the question of how meaning is generated does not
have direct bearing on the particulars of our work described here. This includes
the well-known theories of Wittgenstein [17], Grice [6], and many others, whose
focus on the meaning of language and symbols renders their theories (mostly)
devoid of attempts to outline the particular mechanisms necessary for systems
that generate their own meaning. Similar can be said about what have been
called Referential theories of meaning [1,2,4,8]. Linguistic theories of meaning
concerned with sound-meaning relationships are likewise orthogonally related to

1 See http://www.openaera.org—accessed Jun. 1st, 2024.
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efforts of building AI systems that generate meaning. An overview of a wide
range of philosophical theories of meaning can be found in [5].

In addressing the concept of intelligence, consciousness, and thought, Dennett
proposed the concept of the ‘intentional stance’ [3], which can be adopted by
any third party wanting to explain the behavior of an observed complex system
that is goal-directed and is expected to act (or aim to act) rationally. This view
is very compatible with our theory; one could say that ours begins where it ends.

Our approach to the subject of meaning is in line with Peirce’s Pragmatic
Maxim [10,11], which asserts that the meaning of a concept resides in its con-
ceivable practical effects or consequences and is revealed through its potential
impact on experience and behaviour.

3 Definitions and Concepts

A world W is a formal description of a set of constraints and processes having
its own universal clock that establish universal ground truth for an intelligent
agent. W consists of a set of variables V = {v1, v2, ..., v||V ||}, a set of dynamic
functions F , an initial state S0, and a set of relations � between the variables,
formally W = 〈V, F, S0,�〉. The variables represent everything that may change
or hold a particular value in the world. The dynamic functions define the laws
of nature in W and update its full state: St+δ = F (St) for each t + δ timestep.
The dynamic functions consist of a set of transition functions F = {f1, f2, ..., fn}
where fi : S− → S

′− and S−, S
′− are partial states. Invariant relations in W

are conditions or properties over the variables of W that remain unchanged as
W transitions from one state to another. W is assumed to be nondeterministic,
otherwise the concept of ‘choice’ would be empty (see below). W ’s clock limits
measurements and intervention to a moment in time (the “now” – a demarcated
interval), anchoring both to a particular moment (or interval) in time, in relation
to other events. Measurements and manipulation of W can only be done in the
now. No changes can be made to the past; measurements of the past can be made
under the assumption of no intervening changes having happened; measurements
and changes of the future can be planned through prediction (see below).

A world state S is a set of variables in the world, S ⊂ W , that have assigned
values (some of which can be measured by an agent through its sensors, and
affected through actuators). A situation σ refers to the immediate surroundings
of an agent, where a subset of a world (a set of states) can be relatively easily
measured and affected by the agent at any given time, σ ∈ Wt.

An agent is an embodied system consisting of sensors and actuators, and
a controller (the mind), implemented in some computational substrate (all
together this constitutes the agent’s body). The controller’s substrate contains
resources (compute power and knowledge) that can be committed to cognitive
tasks by an attention process. The body defines the agent’s interface to the
world, which allows the measuring (perception) of variables in W , through the
flow of energy from the body’s sensors to the controller, turning it into data, and
the flow of energy towards its end-effectors for the execution of atomic actions,
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by means of commands initiated by the controller for the body’s actuators. An
agent can be assigned a (set of) top-level drive(s), which define its reason for
existence (in the sense that a vacuum cleaner’s purpose is to keep the floors
clean); all goals and subgoals are derived from this top level (cf. [13]).

A controller consists of a set of processes P that can receive an input,
i ∈ I, produced by either measuring the world W or by producing reflectable
knowledge (inspectable and dissectable thoughts), current state S, at least one
goal gx ∈ G (implicit or explicit) and output o ∈ O in the form of atomic actions
(selected from a set of atomic possible outputs O), that (in the limit) achieve
goal(s) G. We define autonomy not as the size of the space of actions that are
available to the agent at any point in time, but rather, the ability of an agent
to act based only on its own knowledge, without having to ‘call home’ (for the
intervention of an external controller, e.g. a designer or teacher).

An agent A is situated if A is embodied and positioned in a particular
circumstance or situation σ that is subject to limited energy, space and time
(LEST). Our theory of meaning pertains only to the physical world (making no
claims about abstract or hypothetical ones); a situated agent in our theory is thus
always subject to LEST. A situated agent’s action potential is its potential to
assert changes on the environment, in the pursuit of its active goals, as limited
by the current situation (through LEST).

A goal state (positive goal) is a desirable (possibly partially defined) state
that the agent could or should reach. Conversely, a failure state (negative goal)
is an undesirable state that the agent should avoid. The goals an agent is ulti-
mately expected to pursue are called top-level goals (Gtop) and derive from A’s
drives (see above). A goal can be decomposed into a number of subgoals, which
describe and constrain how it can be achieved, resulting in a goal hierarchy with
top-level goals at the top and atomic actions at the bottom. At any given time,
only a subset of the goal hierarchy is commmitted to being pursued – the active
goals. A plan is a sequence of (atomic) actions extending over a period of time,
whose successful execution is expected to update the state of the world according
to the agent’s goals and subgoals, so that a goal (or subgoal) state is achieved
and/or a failure state is avoided. To realize plans, the agent’s runtime opera-
tion involves generating, evaluating, replacing and committing to goals, while
ensuring sensible usage of available resources and knowledge, responsiveness to
unexpected events, in a mixed planning/opportunistic manner.

A learning agent’s knowledge K consists of a growing and changing set of goals
and models, endogenously formed from its experience. Good models allow an
agent to systematically predict, affect, explain and re-create phenomena [14]. To
do so effectively and efficiently, models must capture causal relations between
(hypothesized) causes and their effects [15]. The better (effective, efficient, useful)
the models are for these purposes, the more reliable they are.2 Causal models
describe the evolution of a substate of the world S ⊂ W as a conditional state

2 Models of the physical world generated by an embodied agent may always turn out
to be incorrect; guarantees of ‘truthfulness’ cannot be given. Models thus cannot be
said to be ‘correct’ or ‘true,’ only useful and reliable.
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transition function (the fewer conditions, the more general it is) that applies a
(conditional) rule R to S producing the new state S′: S

R−→ S′. Causal models
can be combined in various ways, via ampliative reasoning [13], to describe the
transformation of one world state S to another S′, in e.g. the attainment of
goals and whether they are realistically possible or not (one role of intelligence
is figuring out which ones are). The application of N causal models, where the
input state of each model m is the output state of the previous model m−1, forms
a causal chain of N sub-states potentially reachable by the system. Causal chains
are built through a process that applies (non-axiomatic, defeasible) reasoning to
models, in the service of goals.

A situated agent’s knowledge about a particular situation is grounded if
an unbroken contextualized chain of causal models can be formed that connects
the low-level perceptual data, generated in the ‘now’ from the agent’s situa-
tion, to its top-level goals. A chain is “broken” if the reliability of any of the
causal models forming the chain is below a minimum threshold; this reliability
is explicit metaknowledge that describes the chain itself that can be reasoned
over (i.e. supports reflection) like models and goals. To consistently pursue and
achieve goals, predict and model its situation, A must have some minimal set of
causal and relational models of the tuple 〈A, σ〉. The agent’s model of self is built
in the same way as other knowledge, consisting of models of its own mind and
body, initially derived from its seed (the knowledge the agent was born with)
and progressively refined, expanded and generalized through experience.

Prediction is an ongoing cognitive process Pr that produces hypothetical
future states S that can be used as the basis for generating new goals G and plans
Pl. Pr implements (non-axiomatic, defeasible) abduction and (non-axiomatic,
defeasible) deduction processes, both of which rely on models of cause-effect
relations. Due to physical limitations in cognitive resources, an agent must select
which predictions to make for any period of time.

Uncertainty exists in all knowledge, stemming from imprecision in mea-
surement (because taking reliable measurements takes time, and time is always
limited), predictions (because they are produced from defeasible knowledge),
and control (due to unknown factors – ‘noise’). A choice is made by an agent
through a commitment of resources to one option from a set of mutually exclusive
alternatives. This includes both thinking and interacting with the world.

4 Meaning Generation

Now we can outline how foundational meaning is generated in an autonomous
situated agent. The following applies equally to agents found in nature and those
manufactured in a lab.
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Definition. The foundational meaning of a datum I to agent A in sit-
uation σ is constituted by a causal coupling of A’s (model of its) situated
future to (its models of) its own action potential – what it considers itself
to be capable and not capable of doing, in light of I, in the form of (active
and non-active) goals and plans, represented in an explicit hierarchy of
relevant knowledge K – such that, based on A’s active goals G and result-
ing new goals G and plans Pl, any relations of I’s to A’s knowledge can
be (causally) traced to A’s top-level goal(s), Gtop.

By ‘datum’ we mean an information structure containing parts that are recog-
nizable (at least to some minimal extent) by an agent. The reason it must have
recognizable (classifiable) parts is that without any such features, the datum
cannot be processed by the agent’s cognition, and would thus be meaningless (I
would be ‘incogitable’ – invisible to the agent’s cognitive mechanisms).

Causal knowledge is a necessary requirement for systematic, efficient and
effective control of a phenomenon. An agent A’s situated future consists of its
predictions of what may and may not happen in its spatio-temporal proximity,
given its knowledge of cause-effect relations relevant to σ. The causal coupling
centers around causal relations, and related relevant knowledge, that form an
unbroken (non-axiomatic, defeasible) chain that connects top-level goals and
low-level perceptions, contextualizing I in A’s knowledge network. The more
reliable the weakest causal link is in this chain, the stronger is the grounding
of the meaning of I to A. A’s action potential is the set of actions (including
measurements) that can be performed by A with respect to I in a given situation
σ (σ defines which variables are observable and manipulable by A and σ thus
constrains A’s action potential). We refer to this overall information content as
an “M-structure.”

Creating an M-structure involves reasoning (non-axiomatic, defeasible
deduction, abduction, induction and analogy – in a variety of combinations).
Such reasoning also determines whether the chain’s strength, whether it is unbro-
ken, and the whether, and how, certain causal models of the world subsume
others. Reasoning is also necessary to figure out implications of I in the present
situation σ, which unavoidably consists of models of relations between diverse
relevant components – sensors, actuators, objects in the environment, forces,
obstacles, etc. – forming a hierarchy of goals, models, plans, parts and wholes.3
The requirement for manipulable models of whole-part relations and constraints
means that the knowledge must be (partly or fully) symbolic;4 the existence of

3 For instance, a shoe is made up by parts like laces, soles, etc.; causal relations define
what can and cannot be done with the shoe and its parts in particular situations,
given certain constraints (e.g. whether we are wearing them or just looking at them).

4 For practical reasons, including memory storage and compute power, there will
always exists a level of detail below which relevant information will not be strictly
symbolic, and another lower one below which it will be completely sub-symbolic.
This is most obvious for low-level perceptual data, e.g. vision, which may involve
bandwidths of 2 megabits per second or more.
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novelty and uncertainty in a non-axiomatic world means that the process and
runtime of the reasoning cannot be known beforehand, so it must be ampliative
and learnable.5 Learning to do ampliative reasoning, in turn, cannot be done
without reflection over both the domain knowledge and the reasoning mecha-
nisms themselves, which calls for a transparent compositional explicit represen-
tational scheme.

To ensure a certain level of alertness and action capacity, a situated agent
must generate meaning continuously. Meaning generation is a situated thought
process that is linked to the ‘now’ via active goals Gt, where t is a (short) interval.
In other words, grounding – grounded cognition – happens via linking a situation
σt to active goals Gt using (reliable) causal models.

The foundational meaning M of I for agent A in situation σ is thus
captured by the M-structure:

MA
now(I) = Prt(I, σt,K) → Gt′ → Plt′′ (1)

where: now: minimum time interval for meaning generation; now = t′′ − t
I: information structure A: agent (embodied controller)
Pr: predictions σ: situation as modeled by the agent
K: the agent’s prior knowledge deemed relevant to I and σ
Gt′ : new or updated goals (active and/or passive) created from Prt

Pl: new plans created from Gt′

‘Now’ spans the time from the measurement when It is received, to the time
that a plan Plt′′ has been produced from the goals Gt′ , that in turn derive from
the predictions Prt.
Question: Why are predictions part of the M-structure?

An intelligent agent will always be in pursuit of a set of goals, in the very least
due to the constantly changing world it’s situated in. The resources needed to
achieve goals, including time, energy, space, and knowledge, the situation’s ‘now’
puts constraints on their achievement. An implicit goal of an intelligent agent
is keeping its action potential high (maximizing its potential choices). When a
controller is presented with a new piece of information, I, the relation of this
information to its active goals must be assessed, to see how the action potential
for them may be impacted. This impact is always in the future; predictions
and plans are a way to detail the shape of such impact. Pursuit of impossible
goals is a waste of a controller’s resources, so it must be capable of making
reasonable predictions about which goals are possible and more sensible than
others, and why. These predictions must say something about the future state
of the situation σ and the agent itself – including its knowledge, embodiment,
and presently active goals G. If an important active goal, e.g. staying alive, is
predicted to be heavily impacted or categorically prevented, this has profound
implications for the agent’s existence (including the fact that all of its other
5 In our approach, ampliative reasoning’ includes (non-axiomatic) deduction, abduc-

tion, induction and analogy. These must be dynamically chosen at runtime based on
situation and active goals.
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active goals will also be prevented). Meaning in a thinking system is thus carried
by predictions.
� Predictions participate in the M-structure by ensuring the reliability of com-

mitted goals and plans.
Q: How does an agent’s perception of a situation affect meaning generation?

The current situation, including an agent’s embodiment, constrains what
the agent can sense and affect at any particular point in time – and this is
critical for determining what knowledge to use for producing goals and plans.
Creating useful (new) models is also dependent on perception and classification
of the present context, and models are the smallest relevant unit for generating
meaning, supporting prediction and action. Predictions that are not grounded in
the ‘now’ and don’t take into account recent changes in the world will be based
on outdated information, resulting in incorrect predictions, which in turn will
produce invalid goals and plans.
� The agent’s model of the current situation is part of the M-structure.

Q: How does an agent’s prior knowledge participate in determining meaning?
To make sense of new information I, an agent has to relate it to its knowl-

edge, including its active goals. This includes dissecting I into its constituent
components and classifying the present situation σ. The only way to do either
is by using existing knowledge. An agent’s top-level goals incarnate its mission;
any active subgoals will by definition be related to this mission. Information
that may help or hinder it in pursuing its active goals will thus be relevant to its
existence. For example, if someone points out a pedestrian to an agent driving
a car, extracting their walking direction may predict them to be on a direct col-
lision course with the car. The classification in this example requires knowledge
about the look and behavior of pedestrians, their mode of locomotion and speed,
and the same for the controlled vehicle. Avoiding harm to others may be one of
the driver’s negative goals. The meaning generated from this dissection – the
potential for causing future harm – thus xaffects an important top-level goal of
the agent. There is no condition under which such classification could be done
without some knowledge about the phenomena in question, at various levels of
detail, in light of the goal.
� The agent’s prior knowledge is part of the M-structure.

Q: Why are new/updated goals part of meaning generation?
Full autonomy requires a system to generate goals and subgoals on its own. At

any moment in time, only a subset of the system’s goals are active; active goals
can be seen as a set of (multi-dimensional) attractors (consisting of subgoals)
that steer the agent’s behavior, with the intent of transforming a situation to
align with its goals. The autonomous goal-generation process is driven by pre-
dictions and reasoning over models of the current knowledge of the situation.
Any perturbation of a path towards a goal may require changing some subset of
a plan or re-planning from scratch. Predicted perturbations may also require a
goal to check at a later time whether the prediction came true. In either case,
the end-product of such efforts would be described by a new or updated goal.
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The meaning is carried not only by the predictions of future states of the present
situation but also the relation of these predictions to the presently active goals
and, ultimately, their relation to the agent’s top-level goals. Hence, updated and
new goals are a necessary step in the meaning generation.
� Updated/new goals are part of the M-structure to ensure an agent’s mission.
Q: Why are plans part of meaning generation?

Any situation’s meaning – to the system itself – is captured by the sys-
tem’s predictions of how the situation develops into the future, and how this
development affects the currently active goals. Given the predicted effect of the
present situation σt on the active goals Gt, and adjusted goals Gt′ that take
those predictions into account, new plans Plt provide actionable descriptions of
how these could be achieved. The generation of plans, and their form, is a neces-
sary part of the meaning generation process because it outlines what is possible
and what is impossible under the constraints presented by σ and I. Plans thus
provide a mechanism for distinguishing between useful and useless (meaningful
and meaningless) information with respect to active goals and the situation, in
light of available knowledge and resources. This, then, is the “end of the line”
of the meaning generation process, feeding back to new predictions, which then
produces new updates to the present meaning structure.
� Plans are part of the M-structure by clarifying the importance of information.

Q: Why is meaning always bound in the ‘now’?
Because the physical world has an immutable ‘ticking clock.’ Thinking is

control, and control is about making choices in light of options, under the con-
straints of the world clock. The past cannot be changed, and only choices made
in the ‘now’ can affect the future – all agents in the physical world are prisoners
of the ‘now.’ Actions are thus only to be enacted in the ‘now.’ Simply by ‘ticking,’
the world clock changes the action potential of all agents, independently of what
they do. This means that the foundational meaning of an agent’s knowledge
will change eventually. Meaning generation is an implemented (physical, “cyber-
physical”) computational process. Computation cannot happen in the past or
in the future: for an autonomous controller the ‘now’ thus serves as the anchor
point for interpreting the current situation; in the ‘now,’ fixated at a particular
point in time, because for meaning to exist, the outlined computations must be
performed. In other words, the generation of meaning is a dynamic process that
has to be executed by a concrete (physical) computing agent. Regardless of pre-
vious events, meaning depends only on the information and knowledge currently
available to an agent. Semantic meaning thus depends on foundational meaning.
� Semantic and foundational meaning are always anchored in the ‘now.’

Q: Is there a difference between meaning and autonomy?
What sets intelligence apart from all other phenomena, and thus defines it,

is its ability to handle novelty [16]. Meaning is the causal linking of novelty,
knowledge, a situation in the now, predictions, goals and plans. Meaning gener-
ation involves the effective and efficient outcome of this process – we say that



A Theory of Foundational Meaning Generation in Autonomous Systems 197

an agent that can do this reliably and repeatedly is able to extract the meaning
of situations. This meaning extraction capability allows an agent, in turn, to
act autonomously. Meaning generation is not needed if autonomy is not desired
or needed; without autonomy there is no need to generate meaning. Autonomy
and meaning are in fact two sides of the same coin: Autonomy without meaning
generation is meaningless; meaning generation without autonomy is pointless.
� Autonomy ≡ Meaning.

5 Conclusions and Future Work

Meaning and meaning generation are key aspects of highly autonomous, gener-
ally intelligent systems. This work contributes to bridging a gap, for too long left
open, between theories of meaning and the design of systems that can generate
and handle meaning. Our theory identifies precisely the qualities necessary for
a system to generate meaning for itself; the hope is to pave the way for a new
class of intelligent systems showing unprecedented autonomy and generality. A
more exhaustive treatment of the implications of this theory, restricted here for
reasons of space, is deferred to future work.
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