Probabilistic Belief States and Bayesian Networks

(Where we exploit the sparseness of direct interactions among components of a world)

R&N: Chap. 14, 14.1-14.2, 14.4.1
Probabilistic Belief

- Consider a world where a dentist agent D meets with a new patient P.

- D is interested in only whether P has a cavity; so, a state is described with a single proposition - Cavity.

- Before observing P, D does not know if P has a cavity, but from years of practice, he believes Cavity with some probability p and ¬Cavity with probability 1-p.

- The proposition is now a boolean random variable and (Cavity, p) is a probabilistic belief.
Probabilistic Belief State

- The world has only two possible states, which are respectively described by Cavity and ¬Cavity.

- The **probabilistic belief state** of an agent is a probabilistic distribution over all the states that the agent thinks possible.

- In the dentist example, D’s belief state is:

<table>
<thead>
<tr>
<th>Cavity</th>
<th>¬Cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>1-p</td>
</tr>
</tbody>
</table>
Vacuum Robot

If the robot has no idea what the state of the world is, and thinks that all states are equally probable (using the “principle of indifference”), its belief state is:
How are beliefs and belief states related?

It is usually more convenient to deal with individual beliefs than with entire belief states, e.g.:
- The robot may choose to execute Suck(R₂) only if Clean(R₂) has low probability
- The robot may directly observe whether Clean(R₁) or Clean(R₂)
Back to the dentist example ...

- We now represent the world of the dentist D using three propositions - Cavity, Toothache, and PCatch

- D's belief state consists of $2^3 = 8$ states each with some probability:
 $$\{\text{Cavity} \land \text{Toothache} \land \text{PCatch}, \quad \neg\text{Cavity} \land \text{Toothache} \land \text{PCatch}, \quad \text{Cavity} \land \neg\text{Toothache} \land \text{PCatch}, \ldots\}$$
The belief state is defined by the full joint probability of the propositions

<table>
<thead>
<tr>
<th></th>
<th>Toothache</th>
<th>¬Toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCatch</td>
<td>0.108</td>
<td>0.072</td>
</tr>
<tr>
<td>¬PCatch</td>
<td>0.012</td>
<td>0.008</td>
</tr>
<tr>
<td>Cavity</td>
<td>0.016</td>
<td>0.144</td>
</tr>
<tr>
<td>¬Cavity</td>
<td>0.064</td>
<td>0.576</td>
</tr>
</tbody>
</table>
Probabilistic Inference

<table>
<thead>
<tr>
<th></th>
<th>Toothache</th>
<th>¬Toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCatch</td>
<td>0.108</td>
<td>0.072</td>
</tr>
<tr>
<td>¬PCatch</td>
<td>0.012</td>
<td>0.008</td>
</tr>
<tr>
<td>Cavity</td>
<td>0.108</td>
<td>0.144</td>
</tr>
<tr>
<td>¬Cavity</td>
<td>0.016</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td>0.012</td>
<td>0.576</td>
</tr>
</tbody>
</table>

\[P(\text{Cavity} \lor \text{Toothache}) = 0.108 + 0.012 + ... = 0.28 \]
Probabilistic Inference

<table>
<thead>
<tr>
<th></th>
<th>Toothache</th>
<th>¬Toothache</th>
<th>¬Toothache</th>
<th>Toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCatch</td>
<td>0.108</td>
<td>0.012</td>
<td>0.072</td>
<td>0.008</td>
</tr>
<tr>
<td>¬PCatch</td>
<td>0.016</td>
<td>0.064</td>
<td>0.144</td>
<td>0.576</td>
</tr>
</tbody>
</table>

\[
P(Cavity) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2
\]
Probabilistic Inference

<table>
<thead>
<tr>
<th></th>
<th>Toothache</th>
<th>¬Toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(Catch)</td>
<td>¬P(Catch)</td>
<td>P(Catch)</td>
</tr>
<tr>
<td>Cavity</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>¬Cavity</td>
<td>0.016</td>
<td>0.064</td>
</tr>
</tbody>
</table>

Marginalization: $P(c) = \sum_t \sum_{pc} P(c \land t \land pc)$

using the conventions that $c = \text{Cavity}$ or $\neg\text{Cavity}$ and that \sum_+ is the sum over $t = \{\text{Toothache}, \neg\text{Toothache}\}$
Conditional Probability

- \(P(A \land B) = P(A|B) \cdot P(B) \)
 \[= P(B|A) \cdot P(A) \]
- \(P(A|B) \) is the **posterior probability of A given B**
Toothache | \(\neg \text{Toothache} \\
| \text{PCatch} | \text{\neg PCatch} | \text{PCatch} | \text{\neg PCatch} \\
--- | --- | --- | ---
\text{Cavity} | 0.108 | 0.012 | 0.072 | 0.008
\text{\neg Cavity} | 0.016 | 0.064 | 0.144 | 0.576

\[
\Pr(\text{Cavity}|\text{Toothache}) = \frac{\Pr(\text{Cavity} \land \text{Toothache})}{\Pr(\text{Toothache})} = \frac{(0.108 + 0.012)}{(0.108 + 0.012 + 0.016 + 0.064)} = 0.6
\]

Interpretation: After observing Toothache, the patient is no longer an “average” one, and the prior probability (0.2) of Cavity is no longer valid.

\(\Pr(\text{Cavity}|\text{Toothache}) \) is calculated by keeping the ratios of the probabilities of the 4 cases unchanged, and normalizing their sum to 1.
Table: Cavity vs. Toothache

<table>
<thead>
<tr>
<th></th>
<th>Toothache</th>
<th>¬Toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>¬Cavity</td>
<td>0.016</td>
<td>0.064</td>
</tr>
</tbody>
</table>

\[
P(Cavity|\text{Toothache}) = \frac{P(Cavity \land \text{Toothache})}{P(\text{Toothache})} = \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6
\]

\[
P(\neg Cavity|\text{Toothache}) = \frac{P(\neg Cavity \land \text{Toothache})}{P(\text{Toothache})} = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4
\]

\[
P(c|\text{Toothache}) = (P(Cavity|\text{Toothache}), P(\neg Cavity|\text{Toothache})) = (0.6, 0.4)
\]
Conditional Probability

- \(P(A \wedge B) = P(A | B) P(B) \)
 \[= P(B | A) P(A) \]

- \(P(A \wedge B \wedge C) = P(A | B, C) P(B \wedge C) \)
 \[= P(A | B, C) P(B | C) P(C) \]

- \(P(\text{Cavity}) = \sum_t \sum_{pc} P(\text{Cavity} \wedge t \wedge pc) \)
 \[= \sum_t \sum_{pc} P(\text{Cavity} | t, pc) P(t \wedge pc) \]

- \(P(c) = \sum_t \sum_{pc} P(c \wedge t \wedge pc) \)
 \[= \sum_t \sum_{pc} P(c | t, pc) P(t \wedge pc) \]
Independence

- Two random variables A and B are independent if
 \[P(A \land B) = P(A) \cdot P(B) \]
 hence if $P(A \mid B) = P(A)$

- Two random variables A and B are independent given C, if
 \[P(A \land B \mid C) = P(A \mid C) \cdot P(B \mid C) \]
 hence if $P(A \mid B, C) = P(A \mid C)$
Updating the Belief State

<table>
<thead>
<tr>
<th></th>
<th>Toothache</th>
<th>¬Toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCatch</td>
<td>0.108</td>
<td>0.072</td>
</tr>
<tr>
<td>¬PCatch</td>
<td>0.012</td>
<td>0.008</td>
</tr>
<tr>
<td>Cavity</td>
<td>0.016</td>
<td>0.144</td>
</tr>
<tr>
<td>¬Cavity</td>
<td>0.064</td>
<td>0.576</td>
</tr>
</tbody>
</table>

- Let D now observe Toothache with probability 0.8 (e.g., “the patient says so”)
- How should D update its belief state?
Updating the Belief State

<table>
<thead>
<tr>
<th></th>
<th>Toothache</th>
<th>¬Toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCatch</td>
<td>¬PCatch</td>
</tr>
<tr>
<td>Cavity</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>¬Cavity</td>
<td>0.016</td>
<td>0.064</td>
</tr>
</tbody>
</table>

- Let E be the evidence such that $P(\text{Toothache}|E) = 0.8$
- We want to compute $P(c \land t \land pc|E) = P(c \land pc|t,E) P(t|E)$
- Since E is not directly related to the cavity or the probe catch, we consider that c and pc are independent of E given t, hence: $P(c \land pc|t,E) = P(c \land pc|t)$
Let E be the evidence such that \(P(\text{Toothache}|E) = 0.8 \).

\[P(c \land pc|E) = P(c \land pc|t,E) P(t|E) \]

Since E is not directly related to the cavity or the probe catch, we consider that c and pc are independent of E given t, hence:

\[P(c \land pc|t,E) = P(c \land pc|t) \]

To get these 4 probabilities, we normalize their sum to 0.8.

To get these 4 probabilities, we normalize their sum to 0.2.

Updating the Belief State

<table>
<thead>
<tr>
<th></th>
<th>Toothache</th>
<th>\neg Toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(Catch)</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>P(Catch)</td>
<td>0.016</td>
<td>0.064</td>
</tr>
<tr>
<td>P(Catch)</td>
<td>0.072</td>
<td>0.008</td>
</tr>
<tr>
<td>P(Catch)</td>
<td>0.018</td>
<td>0.002</td>
</tr>
<tr>
<td>P(Catch)</td>
<td>0.144</td>
<td>0.576</td>
</tr>
<tr>
<td>P(Catch)</td>
<td>0.036</td>
<td>0.144</td>
</tr>
<tr>
<td>P(Catch)</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>P(Catch)</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>P(Catch)</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>P(Catch)</td>
<td>0.144</td>
<td></td>
</tr>
<tr>
<td>P(Catch)</td>
<td>0.576</td>
<td></td>
</tr>
<tr>
<td>P(Catch)</td>
<td>0.144</td>
<td></td>
</tr>
<tr>
<td>P(Catch)</td>
<td>0.002</td>
<td></td>
</tr>
</tbody>
</table>
Issues

- If a state is described by n propositions, then a belief state contains 2^n states (possibly, some have probability 0)
 - Modeling difficulty: many numbers must be entered in the first place
 - Computational issue: memory size and time
Toothache and PCatch are independent given Cavity (or \(\neg \text{Cavity} \)), but this relation is hidden in the numbers!

Bayesian networks explicitly represent independence among propositions to reduce the number of probabilities defining a belief state.
Bayesian Network

- Notice that Cavity is the “cause” of both Toothache and PCatch, and represent the causality links explicitly.
- Give the prior probability distribution of Cavity.
- Give the conditional probability tables of Toothache and PCatch.

\[
P(c \land t \land pc) = P(t \land pc | c) P(c) = P(t | c) P(pc | c) P(c)
\]

5 probabilities, instead of 7
A More Complex BN

Intuitive meaning of arc from x to y: “x has direct influence on y”
A More Complex BN

Size of the CPT for a node with k parents: 2^k

| B | E | P(A|...) |
|---|---|----------|
| T | T | 0.95 |
| T | F | 0.94 |
| F | T | 0.29 |
| F | F | 0.001 |

| A | P(J|...) |
|---|---------|
| T | 0.90 |
| F | 0.05 |

| A | P(M|...) |
|---|---------|
| T | 0.70 |
| F | 0.01 |

10 probabilities, instead of 31
What does the BN encode?

Each of the beliefs JohnCalls and MaryCalls is independent of Burglary and Earthquake given Alarm or ¬Alarm.

For example, John does not observe any burglaries directly.

\[P(b \wedge j) \neq P(b) P(j) \]
\[P(b \wedge j | a) = P(b | a) P(j | a) \]
What does the BN encode?

The beliefs JohnCalls and MaryCalls are independent given Alarm or \(\neg \text{Alarm} \).

For instance, the reasons why John and Mary may not call if there is an alarm are unrelated.
The beliefs JohnCalls and MaryCalls are independent given Alarm or $\neg \text{Alarm}$.

For instance, the reasons why John and Mary may not call if there is an alarm are unrelated.
Locally Structured World

- A world is *locally structured* (or sparse) if each of its components interacts directly with relatively few other components.
- In a sparse world, the CPTs are small and the BN contains much fewer probabilities than the full joint distribution.
- If the # of entries in each CPT is bounded by a constant, i.e., $O(1)$, then the # of probabilities in a BN is linear in n - the # of propositions - instead of 2^n for the joint distribution.
But does a BN represent a belief state?

In other words, can we compute the full joint distribution of the propositions from it?
Calculation of Joint Probability

\[P(J \land M \land A \land \neg B \land \neg E) = ?? \]
\[
P(J \land M \land A \land \neg B \land \neg E) = P(J \land M \land A, \neg B, \neg E) \times P(A \land \neg B \land \neg E) \\
= P(J \land M \land A, \neg B, \neg E) \times P(M \land A, \neg B, \neg E) \times P(A \land \neg B \land \neg E) \\
= P(J | A, \neg B, \neg E) \times P(M | A, \neg B, \neg E) \times P(A \land \neg B \land \neg E) \\
(J \text{ and } M \text{ are independent given } A)
\]

\[
P(J | A, \neg B, \neg E) = P(J | A) \\
(J \text{ and } \neg B \land \neg E \text{ are independent given } A)
\]

\[
P(M | A, \neg B, \neg E) = P(M | A) \\
\]

\[
P(A \land \neg B \land \neg E) = P(A | \neg B, \neg E) \times P(\neg B | \neg E) \times P(\neg E) \\
= P(A | \neg B, \neg E) \times P(\neg B) \times P(\neg E) \\
(\neg B \text{ and } \neg E \text{ are independent})
\]

\[
P(J \land M \land A \land \neg B \land \neg E) = P(J | A)P(M | A)P(A | \neg B, \neg E)P(\neg B)P(\neg E)
\]
Calculation of Joint Probability

\[P(J \land M \land A \land \neg B \land \neg E) = P(J | A)P(M | A)P(A | \neg B, \neg E)P(\neg B)P(\neg E) \]
\[= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 \]
\[= 0.00062 \]
Calculation of Joint Probability

$P(J \land M \land A \land \neg B \land \neg E)$

$= P(J \mid A)P(M \mid A)P(A \mid \neg B, \neg E)P(\neg B)P(\neg E)$

$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$

$= 0.00062$

$P(x_1 \land x_2 \land \ldots \land x_n) = \prod_{i=1,\ldots,n} P(x_i \mid \text{parents}(X_i))$

→ full joint distribution table
Calculation of Joint Probability

Since a BN defines the full joint distribution of a set of propositions, it represents a belief state

\[P(B) = 0.001 \]

\[P(E) = 0.002 \]

\[P(J \wedge M \wedge A \wedge \neg B \wedge \neg E) = P(J | A)P(M | A)P(A | \neg B, \neg E) \]
\[= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 \]
\[= 0.00062 \]

\[P(x_1 \wedge x_2 \wedge \ldots \wedge x_n) = \prod_{i=1, \ldots, n} P(x_i | \text{parents}(X_i)) \rightarrow \text{full joint distribution table} \]
Querying the BN

- The BN gives $P(t|c)$
- What about $P(c|t)$?
- $P(\text{Cavity} | t) = \frac{P(\text{Cavity} \land t) / P(t)}{P(t)}$
 \begin{align*}
 P(C) &= 0.1 \\
 P(T|C) &= 0.4 \\
 P(F|C) &= 0.01111
 \end{align*}
 \text{[Bayes' rule]}
- $P(c|t) = \alpha P(t|c) P(c)$
- Querying a BN is just applying the trivial Bayes' rule on a larger scale
New evidence E indicates that JohnCalls with some probability p

We would like to know the posterior probability of the other beliefs, e.g. $P(\text{Burglary}|E)$

\[
P(B|E) = P(B \land J|E) + P(B \land \neg J|E)
= P(B|J,E)P(J|E) + P(B|\neg J,E)P(\neg J|E)
= P(B|J)P(J|E) + P(B|\neg J)P(\neg J|E)
= pP(B|J) + (1-p)P(B|\neg J)
\]

We need to compute $P(B|J)$ and $P(B|\neg J)$
Querying the BN

- \(P(b|J) = \alpha P(b \land J) \)

 \[= \alpha \sum_m \sum_a \sum_e P(b \land J \land m \land a \land e) \text{ [marginalization]} \]

 \[= \alpha \sum_m \sum_a \sum_e P(b)P(e)P(a|b,e)P(J|a)P(m|a) \text{ [BN]} \]

 \[= \alpha P(b)\sum_e P(e)\sum_a P(a|b,e)P(J|a)\sum_m P(m|a) \text{ [re-ordering]} \]

- Depth-first evaluation of \(P(b|J) \) leads to computing each of the 4 following products twice:

 \(P(J|A) P(M|A), P(J|A) P(\neg M|A), P(J|\neg A) P(M|\neg A), P(J|\neg A) P(\neg M|\neg A) \)

- Bottom-up (right-to-left) computation + caching - e.g., variable elimination algorithm (see R&N) - avoids such repetition

- For singly connected BN, the computation takes time linear in the total number of CPT entries (\(\rightarrow \) time linear in the \# propositions if CPT's size is bounded)
Comparison to Classical Logic

Burglary → Alarm
Earthquake → Alarm
Alarm → JohnCalls
Alarm → MaryCalls

If the agent observes ¬JohnCalls,
it infers ¬Alarm, ¬MaryCalls,
¬Burglary, and ¬Earthquake

If it observes JohnCalls, then it infers nothing
More Complicated Singly-Connected Belief Net

- Battery
- Radio
- SparkPlugs
- Gas
- Starts
- Moves
Some Applications of BN

- Medical diagnosis
- Troubleshooting of hardware/software systems
- Fraud/uncollectible debt detection
- Data mining
- Analysis of genetic sequences
- Data interpretation, computer vision, image understanding