Adversarial Search and Game Playing

(Respect your opponent to make good decisions)

Russell and Norvig:
Chap. 5, Sect. 5.1 - 5.4

Slides adopted from Jean-Claude Latombe at Stanford University
(used with permission)
Games

Games like Chess or Go are compact settings that mimic the uncertainty of interacting with the natural world.

For centuries humans have used them to exert their intelligence.

Recently, there has been great success in building game programs that challenge human supremacy.
Specific Setting

Two-player, turn-taking, deterministic, fully observable, zero-sum, time-constrained game
Search Problem Formulation

- **Initial state**: Game setup at start
- **Player(s)**: Which player moves in state
- **Action(s)**: Legal moves in a state
- **Result(s,a)**: Transition model
- **Terminal-Test(s)**: True when game over
- **Evaluate(s, p)**: Estimate of how good s is for player p
MIN Competes with MAX

- **MIN wants MAX to lose** (and vice versa)

- No plan exists that guarantees MAX’s success regardless of which actions MIN executes (the same is true for MIN)
Time Limit

- At each turn, the choice of which action to perform must be made within a specified time limit.

- The state space is enormous: only a tiny fraction of this space can be explored within the time limit.
Here, symmetries have been used to reduce the branching factor.
In general, the branching factor and the depth of terminal states are large.

Chess:
- Number of states: $\sim 10^{40}$
- Branching factor: ~ 35
- Number of total moves in a game: ~ 100
Choosing an Action: Basic Idea

- Using the current state as the initial state, build the game tree uniformly to the maximal depth h (called horizon) feasible within the time limit.
- Evaluate the states of the leaf nodes.
- Back up the results from the leaves to the root and pick the best action assuming the worst from MIN.

→ Minimax algorithm
Evaluation Function

- Function e: state $s \rightarrow$ number $e(s)$
- $e(s)$ is a heuristics that estimates how favorable s is for MAX

 - $e(s) > 0$ means that s is favorable to MAX (the larger the better)
 - $e(s) < 0$ means that s is favorable to MIN
 - $e(s) = 0$ means that s is neutral
Example: Tic-tac-Toe

\[e(s) = \text{number of rows, columns, and diagonals open for MAX} \]
\[- \text{number of rows, columns, and diagonals open for MIN} \]

8–8 = 0
6–4 = 2
3–3 = 0
Creating an Evaluation Function

Usually a weighted sum of “features”:

\[e(s) = \sum_{i=1}^{n} w_i f_i(s) \]

Features may include
- Number of pieces of each type
- Number of possible moves
- Number of squares controlled
Back up Values

Tic-Tac-Toe tree at horizon = 2

Best move
Continuation
Why using backed-up values?

- At each non-leaf node N, the backed-up value is the value of the **best state that MAX can reach** at depth h if MIN plays well (by the same criterion as MAX applies to itself).

 If e is to be trusted in the first place, then the backed-up value is a better estimate of how favorable $\text{STATE}(N)$ is than $e(\text{STATE}(N))$.
Minimax Algorithm

- Expand the game tree uniformly from the current state (where it is MAX’s turn to play) to depth h
- Compute evaluation function at every leaf
- Back-up the values from the leaves to the root of the tree as follows:
 - MAX node → maximum evaluation of its successors
 - MIN node → minimum evaluation of its successors
- Select the move toward a MIN node that has the largest backed-up value
Minimax Algorithm

- Expand the game tree uniformly from the current state (where it is MAX’s turn to play) to depth h.
- Compute evaluation function at every leaf.
- Back-up the values from the leaves to the root of the tree as follows:
 - MAX node: maximum evaluation of its successors
 - MIN node: minimum evaluation of its successors
- Select the move toward a MIN node that has the largest backed-up value.

Horizon: Needed to return a decision within allowed time.
Game Playing (for MAX)

- Repeat until a terminal state is reached
- Select move using Minimax
- Execute move
- Observe MIN’s move

Note that at each cycle the large game tree built to horizon \(h \) is used to select only one move.

All is repeated again at the next cycle (a sub-tree of depth \(h-2 \) can be re-used).
Can we do better?

Yes! Much better!

This part of the tree can’t have any effect on the value that will be backed up to the root.
Example
The beta value of a MIN node is an upper bound on the final backed-up value. It can never increase.
The beta value of a MIN node is an upper bound on the final backed-up value. It can never increase.
The alpha value of a MAX node is a lower bound on the final backed-up value. It can never decrease.
Example

\[\alpha = 1 \]

\[\beta = 1 \]

\[\beta = -1 \]

2

1

-1
Search can be discontinued below any MIN node whose beta value is less than or equal to the alpha value of one of its MAX ancestors.
Alpha-Beta Pruning

- Explore the game tree to **depth** h in **depth-first** manner

- **Back up** alpha and beta values whenever possible

- **Prune branches** that can’t lead to changing the final decision
Alpha-Beta Algorithm

- Update the alpha/beta value of the parent of a node N when the search below N has been completed or discontinued.
 - Discontinue the search below a **MAX** node N if its alpha value is ≥ the beta value of a **MIN** ancestor of N.
 - Discontinue the search below a **MIN** node N if its beta value is ≤ the alpha value of a **MAX** ancestor of N.
Example

\[
\text{MAX (} \alpha \text{)} \rightarrow \text{MIN (} \beta \text{)} \rightarrow \text{MAX (} \alpha \text{)} \rightarrow \text{MIN (} \beta \text{)} \rightarrow \text{MAX (} \alpha \text{)}
\]
Example

MAX (\(\alpha\))

MIN (\(\beta\))

MAX (\(\alpha\))

MIN (\(\beta\))

MAX (\(\alpha\))

MIN (\(\beta\))

MAX (\(\alpha\))
Example

MAX (α) →
MIN (β) →
MAX (α) →
MIN (β) →
MAX (α) →
Example

MAX (α)

MIN (β)

MAX (α)

MIN (β)

MAX (α)
Example

MAX (α)

MIN (β)

MAX (α)

MIN (β)

MAX (α)
Example

MAX (α)

MIN (β)

MAX (α)

MIN (β)

MAX (α)

MIN (β)

MAX (α)
Example
Example

MAX (α)

MIN (β)

MAX (α)

MIN (β)

MAX (α)
Example

MAX (α) → MIN (β) → MAX (α) → MIN (β) → MAX (α) → MIN (β) → MAX (α)
Example

MAX (α) → MIN (β) → MAX (α) → MIN (β) → MAX (α)

MIN (β) → MAX (α) → MIN (β) → MAX (α) → MIN (β) → MAX (α)
Example

MAX α

MIN β

MAX α

MIN β

MAX α
Example

\[\text{MAX (} \alpha \text{)} \rightarrow \]
\[\text{MIN (} \beta \text{)} \rightarrow \]
\[\text{MAX (} \alpha \text{)} \rightarrow \]
\[\text{MIN (} \beta \text{)} \rightarrow \]
\[\text{MAX (} \alpha \text{)} \rightarrow \]
\[\text{MIN (} \beta \text{)} \rightarrow \]
\[\text{MAX (} \alpha \text{)} \rightarrow \]

\(\text{MIN (} \beta \text{)} \rightarrow \)
Example
Example

MAX (α)

MIN (β)

MAX (α)

MIN (β)

MAX (α)

MIN (β)

MAX (α)
Example

MAX (\(\alpha\))

MIN (\(\beta\))

MAX (\(\alpha\))

MIN (\(\beta\))

MAX (\(\alpha\))

MIN (\(\beta\))

MAX (\(\alpha\))
Example

\[
\begin{align*}
\text{MAX } (\alpha) & \rightarrow 0 \\
\text{MIN } (\beta) & \rightarrow 0 \\
\text{MAX } (\alpha) & \rightarrow 0 \\
\text{MIN } (\beta) & \rightarrow 0 \\
\text{MAX } (\alpha) & \rightarrow 0 \\
\end{align*}
\]
Example

\[\text{MAX (} \alpha \text{)} \]

\[\text{MIN (} \beta \text{)} \]

\[\text{MAX (} \alpha \text{)} \]

\[\text{MIN (} \beta \text{)} \]

\[\text{MAX (} \alpha \text{)} \]

\[\text{MIN (} \beta \text{)} \]

\[\text{MAX (} \alpha \text{)} \]
Example

\[
\text{MAX (}\alpha\text{)} \\
\text{MIN (}\beta\text{)} \\
\text{MAX (}\alpha\text{)} \\
\text{MIN (}\beta\text{)} \\
\text{MAX (}\alpha\text{)}
\]

\[
\text{MIN (}\beta\text{)} \\
\text{MAX (}\alpha\text{)} \\
\text{MIN (}\beta\text{)} \\
\text{MAX (}\alpha\text{)}
\]

\[
\text{MIN (}\beta\text{)} \\
\text{MAX (}\alpha\text{)} \\
\text{MIN (}\beta\text{)} \\
\text{MAX (}\alpha\text{)}
\]
Example

\[\text{MAX} (\alpha) \rightarrow 0 \]

\[\text{MIN} (\beta) \rightarrow 0 \]

\[\text{MAX} (\alpha) \rightarrow 2 \]

\[\text{MIN} (\beta) \rightarrow 1 \]

\[\text{MAX} (\alpha) \rightarrow -3 \]

\[\text{MIN} (\beta) \rightarrow 0 \]

\[\text{MAX} (\alpha) \rightarrow 0 \]

\[\text{MIN} (\beta) \rightarrow -3 \]

\[\text{MAX} (\alpha) \rightarrow 1 \]

\[\text{MIN} (\beta) \rightarrow 0 \]

\[\text{MAX} (\alpha) \rightarrow -3 \]
Example

MAX (α)

MIN (β)

MAX (α)

MIN (β)

MAX (α)

MIN (β)

MAX (α)
Example

\[
\begin{align*}
\text{MAX (}\alpha\text{)} & \rightarrow 0 \\
\text{MIN (}\beta\text{)} & \rightarrow 0 \\
\text{MAX (}\alpha\text{)} & \rightarrow 0 \\
\text{MIN (}\beta\text{)} & \rightarrow 0 \\
\text{MAX (}\alpha\text{)} & \rightarrow 0 \\
\end{align*}
\]
Example

\[
\text{MAX } (\alpha) \quad \text{MIN } (\beta)
\]

\[
\text{MAX } (\alpha) \quad \text{MIN } (\beta)
\]

\[
\text{MAX } (\alpha) \quad \text{MIN } (\beta)
\]
Example

MAX (\(\alpha\))

MIN (\(\beta\))

MAX (\(\alpha\))

MIN (\(\beta\))

MAX (\(\alpha\))

MIN (\(\beta\))

MAX (\(\alpha\))
Example

\[
\begin{align*}
\text{MAX (} \alpha \text{)} & \quad \rightarrow \quad 0 \\
\text{MIN (} \beta \text{)} & \quad \rightarrow \quad 0 \\
\text{MAX (} \alpha \text{)} & \quad \rightarrow \quad 0 \\
\text{MIN (} \beta \text{)} & \quad \rightarrow \quad 0 \\
\text{MAX (} \alpha \text{)} & \quad \rightarrow \quad 0 \\
\text{MIN (} \beta \text{)} & \quad \rightarrow \quad 0 \\
\text{MAX (} \alpha \text{)} & \quad \rightarrow \quad 0 \\
\text{MIN (} \beta \text{)} & \quad \rightarrow \quad 0 \\
\text{MAX (} \alpha \text{)} & \quad \rightarrow \quad 0 \\
\end{align*}
\]
Example

\[
\begin{align*}
\text{MAX } (\alpha) & \quad \text{MIN } (\beta) \\
\text{MAX } (\alpha) & \quad \text{MIN } (\beta) \\
\text{MAX } (\alpha) & \quad \text{MIN } (\beta) \\
\text{MAX } (\alpha) & \quad \text{MIN } (\beta) \\
\end{align*}
\]
Example
Example

MAX (\(\alpha\))

MIN (\(\beta\))

MAX (\(\alpha\))

MIN (\(\beta\))

MAX (\(\alpha\))
How much do we gain?

Consider these two cases:

\[\alpha = 3 \]
\[\beta = -1 \]
\[\alpha = 3 \]
\[\beta = 4 \]
How much do we gain?

Assume a game tree of uniform branching factor b

Minimax examines $O(b^h)$ nodes, so does alpha-beta in the worst-case
How much do we gain?

- The gain for alpha-beta is maximum when:
 - The MIN children of a MAX node are ordered in decreasing backed up values.
 - The MAX children of a MIN node are ordered in increasing backed up values.

- Then alpha-beta examines $O(b^{h/2})$ nodes [Knuth and Moore, 1975]
How much do we gain?

But this requires an oracle (if we knew how to order nodes perfectly, we would not need to search the game tree)

If nodes are ordered at random, then the average number of nodes examined by alpha-beta is $\sim O(b^{3h/4})$
Heuristic Ordering of Nodes

Order the nodes below the root according to the values backed-up at the previous iteration
Other Improvements

- Adaptive horizon + iterative deepening
- **Extended search**: Retain $k>1$ best paths, instead of just one, and extend the tree at greater depth below their leaf nodes (to help dealing with the “horizon effect”)
- **Singular extension**: If a move is obviously better than the others in a node at horizon h, then expand this node along this move
- Use transposition tables to deal with repeated states
- Null-move search
Checkers: Tinsley vs. Chinook

Name: Marion Tinsley
Profession: Teach mathematics
Hobby: Checkers
Record: Over 42 years, loses only 3 games of checkers

World champion for over 40 years

Mr. Tinsley suffered his 4th and 5th losses against Chinook
Chinook

First computer to become official world champion of Checkers!
Chess: Kasparov vs. Deep Blue

<table>
<thead>
<tr>
<th>Kasparov</th>
<th>Deep Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height 5’10”</td>
<td>6’ 5”</td>
</tr>
<tr>
<td>Weight 176 lbs</td>
<td>2,400 lbs</td>
</tr>
<tr>
<td>Age 34 years</td>
<td>4 years</td>
</tr>
<tr>
<td>Computers Extensive</td>
<td>32 RISC processors</td>
</tr>
<tr>
<td>Knowledge Electrical/chemical</td>
<td>+ 256 VLSI chess engines</td>
</tr>
<tr>
<td>Power Source Enormous</td>
<td>200,000,000 pos/sec</td>
</tr>
<tr>
<td>Ego</td>
<td>Primitive</td>
</tr>
<tr>
<td>Speed 2 pos/sec</td>
<td>Electrical</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

1997: Deep Blue wins by 3 wins, 1 loss, and 2 draws

Jonathan Schaeffer
Chess: Kasparov vs. Deep Junior

August 2, 2003: Match ends in a 3/3 tie!

Deep Junior
8 CPU, 8 GB RAM, Win 2000
2,000,000 pos/sec
Available at $100
Othello: Murakami vs. Logistello

Takeshi Murakami
World Othello Champion

1997: The Logistello software crushed Murakami by 6 games to 0
Go: Goemate vs. ??

Name: Chen Zhixing
Profession: Retired
Computer skills:
 self-taught programmer
Author of Goemate (arguably the best Go program available today)

Gave Goemate a 9 stone handicap and still easily beat the program, thereby winning $15,000
Go: Goemate vs. ??

Name: Chen Zhixing
Profession: Retired
Computer skills: self-taught programmer
Author of Goemate (arguably the best Go program available today)

Gave Goemate a 9 stone handicap and still easily beat the program, thereby winning $15,000

Jonathan Schaeffer

Go has too high a branching factor for existing search techniques

Current and future software must rely on huge databases and pattern-recognition techniques
Secrets

Many game programs are based on alpha-beta + iterative deepening + extended/singular search + transposition tables + huge databases + ...

For instance, Chinook searched all checkers configurations with 8 pieces or less and created an endgame database of 444 billion board configurations
The methods are general, but their implementation is dramatically improved by many specifically tuned-up enhancements (e.g., the evaluation functions) like an F1 racing car.
Chess is the Drosophila of artificial intelligence. However, computer chess has developed much as genetics might have if the geneticists had concentrated their efforts starting in 1910 on breeding racing Drosophila. We would have some science, but mainly we would have very fast fruit flies.

Saying Deep Blue doesn’t really think about chess is like saying an airplane doesn’t really fly because it doesn’t flap its wings.

John McCarthy

Drew McDermott
Other Types of Games

- Multi-player games, with alliances or not
- Games with randomness in successor function (e.g., rolling a dice) → Expectminimax algorithm
- Games with partially observable states (e.g., card games) → Search of belief state spaces