
Adversarial Search and 
Game Playing 
(Respect your opponent to make good decisions) 

Slides adopted from Jean-Claude Latombe at Stanford University 
(used with permission)

Russell and Norvig: 
Chap. 5, Sect. 5.1 - 5.4  



Games

Games like Chess or Go are compact 
settings that mimic the uncertainty of 
interacting with the natural world
For centuries humans have used them 
to exert their intelligence
Recently, there has been great success 
in building game programs that 
challenge human supremacy



Specific Setting

Two-player, turn-taking, deterministic, 
fully observable, zero-sum, 
time-constrained game



Search Problem Formulation

Initial state: Game setup at start
Player(s): Which player moves in state
Action(s): Legal moves in a state
Result(s,a): Transition model
Terminal-Test(s): True when game over
Evaluate(s, p): Estimate of how good s 
is for player p



MIN Competes with MAX

MIN wants MAX to lose 
(and vice versa)

No plan exists that guarantees MAX’s 
success regardless of which actions MIN 
executes (the same is true for MIN)



Time Limit

At each turn, the choice of which action 
to perform must be made within a 
specified time limit

The state space is enormous: 
only a tiny fraction of this space 
can be explored within the time limit



Game Tree
MAX’s play 

MIN’s play 

Terminal state
(win for MAX) 

Here, symmetries have been used 
to reduce the branching factor

MIN nodes

MAX nodes



Game Tree
MAX’s play 

MIN’s play 

Terminal state
(win for MAX) 

In general, the branching 
factor and the depth of 
terminal states are large
Chess:
• Number of states: ~1040

• Branching factor: ~35
• Number of total moves 

in a game: ~100



Choosing an Action: Basic Idea

Using the current state as the initial state, 
build the game tree uniformly to the 
maximal depth h (called horizon) feasible 
within the time limit
Evaluate the states of the leaf nodes
Back up the results from the leaves to the 
root and pick the best action assuming the 
worst from MIN

Minimax algorithm 



Evaluation Function

Function e: state s number e(s)
e(s) is a heuristics that estimates how 
favorable s is for MAX

e(s) > 0 means that s is favorable to MAX 
(the larger the better)

e(s) < 0 means that s is favorable to MIN 
e(s) = 0 means that s is neutral 



Example: Tic-tac-Toe
e(s) = number of rows, columns, 

and diagonals open for MAX 
- number of rows, columns, 
and diagonals open for MIN 

88 = 0 64 = 2 33 = 0



Creating an Evaluation Function

Usually a weighted sum of “features”:

Features may include
Number of pieces of each type
Number of possible moves
Number of squares controlled 


n

i i
i=1

e(s)= wf(s)



Backing up Values

6-5=1

5-6=-15-5=0

5-5=0 6-5=1 5-5=1 4-5=-1

5-6=-1

6-4=25-4=1

6-6=0 4-6=-2

-1

-2

1

1Tic-Tac-Toe tree
at horizon = 2 Best move



Continuation

0

1

1

1 32 11 2

1

0

1 1 0

0 2 01 1 1

2 22 3 1 2



Why using backed-up values?

At each non-leaf node N, the backed-up value 
is the value of the best state that MAX can 
reach at depth h if MIN plays well (by the 
same criterion as MAX applies to itself)

If e is to be trusted in the first place, 
then the backed-up value is a better 
estimate of how favorable STATE(N) is 
than e(STATE(N)) 



Minimax Algorithm
Expand the game tree uniformly from the 
current state (where it is MAX’s turn to play) 
to depth h
Compute evaluation function at every leaf
Back-up the values from the leaves to the root 
of the tree as follows:

MAX node maximum evaluation of its successors
MIN node minimum evaluation of its successors

Select the move toward a MIN node that has 
the largest backed-up value



Minimax Algorithm
Expand the game tree uniformly from the 
current state (where it is MAX’s turn to play) 
to depth h
Compute evaluation function at every leaf
Back-up the values from the leaves to the root 
of the tree as follows:

MAX node � maximum evaluation of its successors
MIN node � minimum evaluation of its successors

Select the move toward a MIN node that has 
the largest backed-up value

Horizon: Needed to return a 
decision within allowed time



Game Playing (for MAX)

Repeat until a terminal state is reached
Select move using Minimax
Execute move
Observe MIN’s move

Note that at each cycle the large game tree built 
to horizon h is used to select only one move

All is repeated again at the next cycle (a sub-tree 
of depth h-2 can be re-used)



Can we do better?

Yes ! Much better !

3

-1

Pruning

 -1

 3

This part of the tree can’t 
have any effect on the value 
that will be backed up to the 
root



Example



Example

 = 2

2

The beta value of a MIN
node is an upper bound on
the final backed-up value.
It can never increase



Example

The beta value of a MIN
node is an upper bound on
the final backed-up value.
It can never increase

1

 = 1

2



Example

 = 1

The alpha value of a MAX
node is a lower bound on
the final backed-up value.
It can never decrease

1

 = 1

2



Example

 = 1

1

 = 1

2 -1

 = -1



Example

 = 1

1

 = 1

2 -1

 = -1

Search can be discontinued below
any MIN node whose beta value is 
less than or equal to the alpha value
of one of its MAX ancestors

Search can be discontinued below
any MIN node whose beta value is 
less than or equal to the alpha value
of one of its MAX ancestors



Alpha-Beta Pruning

Explore the game tree to depth h in 
depth-first manner

Back up alpha and beta values whenever 
possible

Prune branches that can’t lead to changing 
the final decision



Alpha-Beta Algorithm

Update the alpha/beta value of the parent of 
a node N when the search below N has been 
completed or discontinued

Discontinue the search below a MAX node 
N if its alpha value is  the beta value of a 
MIN ancestor of N
Discontinue the search below a MIN node 
N if its beta value is  the alpha value of a 
MAX ancestor of N



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0 -3

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0 -3

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3 3

3

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3 3

3

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

5

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

0

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

5

0

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

0

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

0

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

0

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

0

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

1MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

2

2

2

2

1

1MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

2

2

2

2

1

MIN ()

MAX ()

MIN ()

MAX ()

MIN ()

MAX ()

MAX ()



How much do we gain?

Consider these two cases:

3

 = 3

-1

=-1

(4)

3

 = 3

4

=4

-1



How much do we gain?

Assume a game tree of uniform 
branching factor b

Minimax examines O(bh) nodes, so does 
alpha-beta in the worst-case 



How much do we gain?

The gain for alpha-beta is maximum 
when:

The MIN children of a MAX node are 
ordered in decreasing backed up values
The MAX children of a MIN node are 
ordered in increasing backed up values

Then alpha-beta examines O(bh/2) 
nodes [Knuth and Moore, 1975]



How much do we gain?

But this requires an oracle (if we knew 
how to order nodes perfectly, we would 
not need to search the game tree)

If nodes are ordered at random, then 
the average number of nodes examined 
by alpha-beta is ~O(b3h/4)



Heuristic Ordering of Nodes

Order the nodes below the root 
according to the values backed-up at 
the previous iteration



Other Improvements

Adaptive horizon + iterative deepening
Extended search: Retain k>1 best paths, instead of 
just one, and extend the tree at greater depth below 
their leaf nodes (to help dealing with the “horizon 
effect”)
Singular extension: If a move is obviously better than 
the others in a node at horizon h, then expand this 
node along this move
Use transposition tables to deal with repeated states
Null-move search



Computers For The Win!



Checkers: Tinsley vs. Chinook

Name: Marion Tinsley
Profession: Teach mathematics
Hobby: Checkers
Record: Over 42 years 

loses only 3 games 
of checkers

World champion for over 40  
years

Mr. Tinsley suffered his 4th and 5th losses against Chinook



Chinook

First computer to become official world 
champion of Checkers!



Chess:
Kasparov vs. Deep Blue
Kasparov

5’10” 
176 lbs
34 years
50 billion neurons

2 pos/sec
Extensive
Electrical/chemical
Enormous

Height
Weight

Age
Computers

Speed
Knowledge

Power Source
Ego

Deep Blue

6’ 5”
2,400 lbs

4 years
32 RISC processors 

+ 256 VLSI chess engines
200,000,000 pos/sec

Primitive
Electrical

None

Jonathan Schaeffer

1997: Deep Blue wins by 3 wins, 1 loss, and 2 draws



Chess:
Kasparov vs. Deep Junior

August 2, 2003: Match ends in a 3/3 tie!

Deep Junior

8 CPU, 8 GB RAM, Win 2000 
2,000,000 pos/sec
Available at $100



Othello: 
Murakami vs. Logistello

Takeshi Murakami
World Othello Champion

1997: The Logistello software crushed Murakami 
by 6 games to 0



Go: Goemate vs. ??
Name: Chen Zhixing
Profession: Retired
Computer skills: 

self-taught programmer
Author of Goemate (arguably the best 
Go program available today)

Gave Goemate a 9 stone
handicap and still easily
beat the program,
thereby winning $15,000

Jonathan Schaeffer



Go: Goemate vs. ??
Name: Chen Zhixing
Profession: Retired
Computer skills: 

self-taught programmer
Author of Goemate (arguably the best 
Go program available today)

Gave Goemate a 9 stone
handicap and still easily
beat the program,
thereby winning $15,000

Jonathan Schaeffer

Go has too high a branching factor for existing 
search techniques

Current and future software must rely on huge 
databases and pattern-recognition techniques



Secrets

Many game programs are based on alpha-
beta + iterative deepening + 
extended/singular search + transposition 
tables + huge databases + ...

For instance, Chinook searched all checkers 
configurations with 8 pieces or less and 
created an endgame database of 444 billion 
board configurations



Secrets

The methods are general, but their 
implementation is dramatically improved by 
many specifically tuned-up enhancements 
(e.g., the evaluation functions) like an F1 
racing car



Perspective on Games: 
Con and Pro

Chess is the Drosophila of 
artificial intelligence. However, 
computer chess has developed 
much as genetics might have if 
the geneticists had concentrated 
their efforts starting in 1910 on 
breeding racing Drosophila. We 
would have some science, but 
mainly we would have very fast 
fruit flies.

John McCarthy

Saying Deep Blue doesn’t 
really think about chess 
is like saying an airplane 

doesn't really fly because 
it doesn't flap its wings.

Drew McDermott



Other Types of Games

Multi-player games, with alliances or not
Games with randomness in successor 
function (e.g., rolling a dice) 
Expectminimax algorithm
Games with partially observable states  
(e.g., card games)
Search of belief state spaces


