

CONVERSATIONALLY-SMART(ER) ANIMATED AGENTS

Justine Cassell and Group, MIT Media La

Goal: Embodied Conversational Characters

- Autonomous self-animating characters for use in production animation, interfaces and computer games.
- Autonomy comes from underlying models of behavior and intelligence.
- Intelligence here means "social smarts"
- Social smarts is being able to engage a human in an interesting, relevant conversation with appropriate speech and body behaviors.

Motivation

- Embodied conversational characters may leverage users' natural tendencies to attribute humanness to the interface.
- Push the "face-to-face conversation" metaphor of interface to the max
- Allow communication through multiple, natural, modalities.
- Exploit graphical bodies for the kinds of intelligence they do best

A Short History of Intelligence for Animation

Physical models

- Behavioral models
- Cognitive models
- Social & Conversational models

$AI \rightarrow believability \rightarrow smarter$

Classical Al:
 Knows the domain

Looks human

Reasons about problemsBelievability:

- Engages in human-like behaviors
- Smarter:
 Acts human (and reacts to humans)
 - Knows about the function of human-like behaviors
 - Incorporates several kinds of intelligence

Why smart is better

- □ We interpret all behaviors (despite ourselves).
- We attribute reactivity to all animated creatures.
- So, if behaviors are wrong, mismatched to one-another or badly timed, the agent looks stupid.
- Graphics is the only way to convey certain kinds of intelligence.
- With more intelligence in graphics, we are moving towards a face-to-face Turing test.

Some aspects of Conversational Smarts

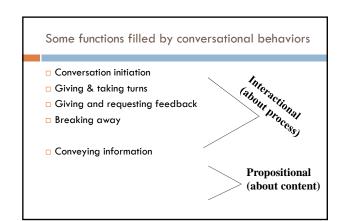
- □ The same channels carry <u>propositional</u> information (about the content of what is being said) and interactional information (about the process of conversation).
- Propositional and interactional information are carried by verbal (speech, intonation) and visual (facial expression, gesture, posture) means.

That is . .

Propositional Layer

- $\hfill\square$ Verbal and visual behaviors that contribute to the intended meaning. Verbal: content of speech & intonation
- Visual / Non-verbal: deictic, iconic & metaphoric gestures
- Interactional Layer
 - Verbal and visual behaviors that regulate, coordinate and manage information flow.
 - Verbal: back-channels, "uh-huh"
 - Non-verbal / visual: gaze, nods, facial expressions, etc.

□ An Example


- A conversation becomes increasingly synchronized (entrainment) Time scales vary widely -- 400 ms to 1.4 sec (multi-threadedness) Multi-modality follows function(gesture is there because we need it).

Some conversational behaviors

Speech

- Intonation
- Filled pauses ("umm" & other noises)
- Eye gaze towards & away from interlocutor
- Raising eyebrows
- Nods & head shakes
- Hand gestures
- Body posture

Eye & Head Movement

Eye gaze & Head turns mark
 Status of turn-taking

- Attention to task
- Cognitive activity

Hand Gestures

Mark

 $\hfill\square$ information as new and otherwise important

🗆 Add

manner to description of motion
 spatialization of people and events
 speaker's beliefs about discourse

Human Conversation

OK, so the name of it is Canary Row and it's got this Sylvester and Tweety guy and um what happens is it starts out and it's + um it's like a road that's separating these two buildings. One of 'em I think is a hotel - the tape kinda shoreted out for a second so you couldn't read what it was and the other one where Sylvester is is um this thing called Bird Watcher Society, so it's kind of a joke on that, and it starts out with you seeing Sylvester. Sylvester looks, pulls out the binoculars, looks across the street at the hotel.

lconic

So the name of it is Canary Rowand it's got this Sylvester and Tweety guy

Deictic

- One of 'em I think is a hotel
- $\hfill\square$ the tape kinda shorted out for a second
- so you couldn't read what it was

Metaphoric

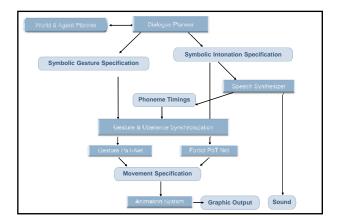
Okay, so the name of it is Canary Row

Beat

And um what happens is it starts outand it's

Why do we need this stuff?

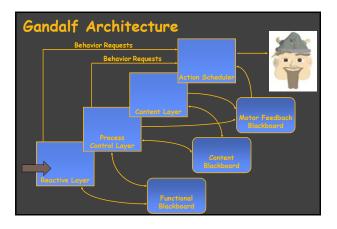
<u>To reiterate:</u>


- if behaviors are wrong, or mismatched to one another, or mis-timed, the human will still assume that some meaning is intended . . . But will assume the wrong meaning.
- If behaviors are right, human will assume intelligence, credibility, interactional space.
- So we need to work from an accurate model of socialconversational skills.

How to integrate conversational smarts into Animated Agents

- Distinction between surface behaviors and function.
 One behavior (a gesture) can mean several things
 One meaning ("it's my turn") can be indicated by any one of several behaviors.
- Synchronize different channels (speech, gesture, facial expression) from early in the generation process.
- Timing, timing, timing (action scheduler)

See Cassell, Pelachaud, Prevost, Stone, Badler, Steedman, Deauville, 1994



Note that

- $\hfill\square$ They look like they're engaging in "foreigner talk"
- We can't help but attribute function to the number of head nods, the repetition of speech, their jerkiness.

Excerpt from Gandalf

Note that

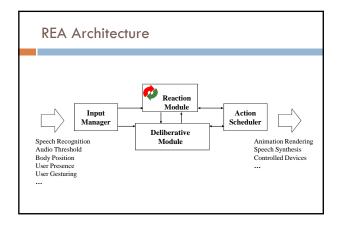
Gandalf only knows a finite number of responses.Only one gesture.

But, he interacts well enough for us to ask:
 Do people think he's conversationally smart?

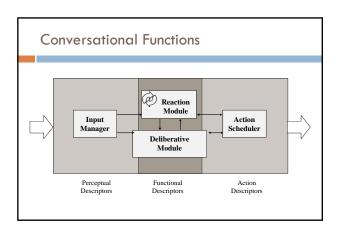
Does conversational smarts matter? Evaluation of Gandalf

 When Gandalf exhibited conversational smarts (and did not exhibit emotions), he was judged to be
 more credible
 more helpful
 more collaborative

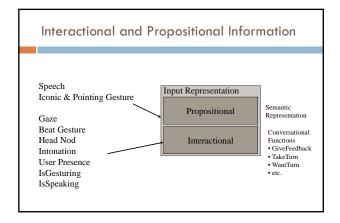
2 user studies: communicative task & collaborative task

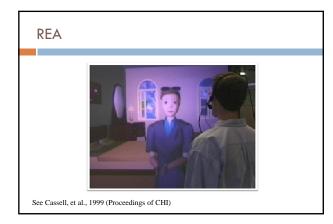

REA Embodied Conversational Agent: Case Study, in detail

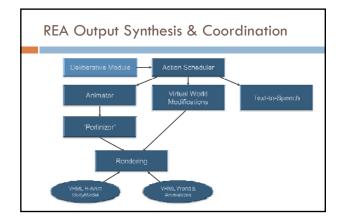
- Support Multi-Modal Input and Graphical Output
- Operate in Real-Time
- Process Propositional and Interactional Information
- Use Conversational Functions (over modalities)
- Be Modular and Extensible
- Generate verbal and non-verbal output

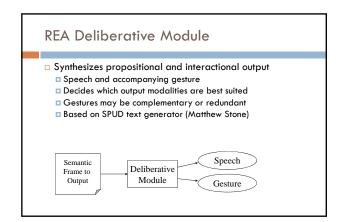

Domain: REA, Experiment in Virtual Realty

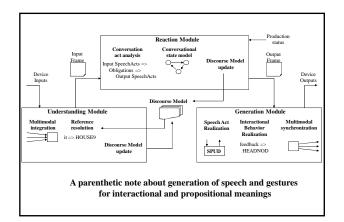
- Shows clients through houses
- Engages in small talk
- Answers questions about particular houses
- Obeys requests to show houses/rooms
- Asks questions about client's housing needs

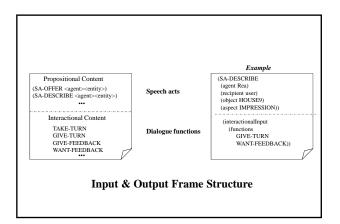


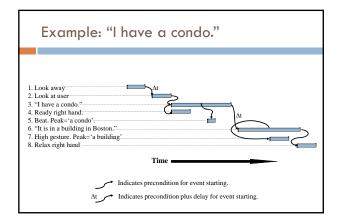












Coordinates execution of multiple output channels:
 Within a device (e.g. animated gesture & gaze)
 Across devices (e.g., TTS and animation)

Execution is event-driven because:

Very difficult to predict execution timings and start times
 Each modality can produce events while executing an action
 Events trigger the start or end of other actions.

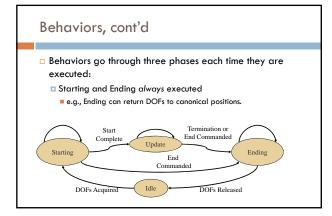
Degrees of Freedom

 Output resources which can be subject to contention among competing behaviors.

e.g., TTS, right-arm, eyes, head

Action Scheduler handles arbitration among DOFs to ensure that only one behavior at a time can control a DOF.

Behaviors


Represent atomic actions


- e.g., right-arm-gesture, head-nod, speech
- Specify a set of DOFs required for execution.

Commands:

start-once (execute "once" and stop)

- start-continuous
- stop
- Commands issued with specified priority.

Event Rules

Actions are specified in condition-action rules:

Events can be

- * immediate
- * after a specified event (or Δt after an event)
- * before a specified event
- * during a specified event
- * and/or/not combinations of the above

Action Scheduler

Functions as

- Rule-interpreter:
- Determines when a rule's precondition is satisfied (or can never be satisfied)
 Preemptive multi-tasking operating system

 - Determines if a commanded behavior can run
 - Preempts running behavior if there is a DOF conflict and running behavior has lower priority The running behavior's Ending routine is always run first.

Example	
(action :id H_AWAY	:when immediate :content (headlook :cmd away :object user))
(action :id H_AT	:when (offset_after :event H_AWAY.END :time 00:01.50)
	:content (headlook :cmd towards :object user))
(action :id S_CONDO	:when (after :event H_AT.END)
	:content (speak :content "I have a condo."))
(action	:when (after :event S_CONDO.START)
	:content (rightgesture :cmd ready))
(action	:when (after :event S_CONDO.WORD3)
	:content (rightgesture :cmd beat))
(action :id S_BLDG	:when (offset_after :event S_COND.END :time 00:01.00)
	:content (speak :content "It is in a building in Boston."))
(action	:when (after :event S_BLDG.WORD4)
	:content (rightgesture :cmd compose :trajectory verticalup :handshape bend
(action	:when (after :event S_BLDG.END)
	:content (rightgesture :cmd relax))

Animator

Ċ.

- Drives an articulated character
- $\hfill\square$ Character model read as VRML
- $\hfill\square$ Joints named according to H-Anim spec
- Interpolators animate groups of joints
- Groups are bodyparts like an arm or a hand
- $\hfill\square$ Each group can be given a Shape
- Shapes are used as keyframes

Animator

- Shapes are either predefined or from IK
 ARM->MoveTo(x,y,z,t_approach,t_duration); HAND->SetShape("fist",t_approach,t_duration);
- Series of Shapes define a Path
 ARM->SetPath("wave",i_approach,i_duration); HAND->SetShape("flat", t_approach,i_duration);

Perlinizer: Background Motion Generator

- Adds "lifelike" motion to character
 Motion while idle
 - Variability during commanded motion
- Each Joint in H-Anim model can have two background signals specified
 - $\hfill\square$ Idle and InUse with smooth transitions between
 - $\hfill\square$ Signals are specified per Perlin Improv system
 - Background signal <u>added</u> to commanded motion

Excerpt from REA

Conversational Functions Currently Modeled

Notice user presence / absence (gaze)

- Ritual greet and farewell
- Turn-taking
 - Wanting turn interruption
 - Taking turn interruption
- Backchannel feedback
- Simple speech repair
- Role of gesture in semantics & discourse

Conversational Behaviors Exhibited

Synthesized speech

- Eye gaze towards & away from interlocutor
- Raising eyebrows
- Nods & head shakes
- $\hfill\square$ Many kinds of hand gestures
- Body posture & orientation

Other Important Dimensions (that I haven't covered)

- IndividualityArtistic appearance
- Learning
- Task specificity / function

□...

Conclusion

- Social-conversational skills allow humans to engage one another in information exchange, and the construction of relationships.
- Social-conversational intelligence is a key way of making animated agents more engaging, more credible, more like partners.
- Visual information about conversation plays a key role in manifesting this kind of intelligence.
- Embodied conversational agents may one day allow a face-to-face Turing test...

More Information

□ http://www.media.mit.edu/~justine/

