-022-AR1	milodu	ction to	AI	
Teacher: Hann (hannes@ru.is)	es Högni Vilh	jálmsson		
Assistant: Arna (arnarbi@gmail.c	Birgisson m)			
Classes (K-21)				
 Mondays at 	15:30			
Tuesdays a	10:05			
Fridays at 1	0:05			

-6	22-ARTI Introduction to AI
٦	opics Covered
	Agents and Architecture (chapter 2)
	Search (chapters 3-6)
	 Logic and reasoning (chapters 7-10)
	 Planning (chapter 11)
1	Bayesian Networks (chapter 14)
	Learning (chapter 18)
-	Perception
	Natural Language

-OZZ-AKTI IIIIOQUCIO	ιυΑΙ
Final Grade	
 Discussion 	20%
Programming Assignments (x2)	10%]
Problem Sets (x2)	10%
Final Project	30%
 Final Written Exam 	30% ←
Attendance	
 70% required for taking final exa 	m

4	Discussion
	 Specific short reading is assigned (TUES)
	You post 3 questions online (SUN)
	We discuss your questions together in class (TUES
	 Your participation here is 20% of grade!
4	Do you know of thought provoking readings?
	Let me know and I may schedule them

Acting Humanly	
The Turing Test	
 Proposed by Alan Turing (1950) 	
 Establishes human action as the benchmark 	
Al passes test if written interrogation by human does not unveil it as a computer	
Provides plenty to work on!	
Natural Language Processing Knowledge Representation Automated Reasoning	
Machine Learning	

Ac	cting Humanly
٢	The Turing Test (cont.)
	The "Physical" test has also been proposed
	Involes even more fields including
	Computer Vision
1	Robotics
4	Seems to cover most of Al!
4	BUT! Does it help us to build intelligence?
	 Human flight came with study of aerodynamics,
	not by imitating birds.

T	hinking Rationally
	What is "right thinking"?
	The greeks tried to answer this with laws of thought
	Initiated the field of logic
	Logicist AI tries to describe all kinds of things and problems with a precise logical notation and use that to find "right solutions"
	 Problems: (A) Incomplete information; (B) Impractical implementation

CTI	
Ra	ational Agents try to achieve the best spected outcome
M	ay use logic inference, but ALSO other
a	oproaches to rational behavior
	E.g. Reflexes can produce rational reaction
►H	ere we choose the Rational Agent erspective because
	More general than pure logic inference
-	Better defined than human rationality

Philosophy	
Aristotle (384-322 BC)	
 Generating conclusions mechanically given a premise 	
Hobbes (1588-1679)	-
 Reasoning like numerical computation 	n
Pascal (1623-1662)	
 Numerical calculating machine – "like 	thought!"
◆ Leibniz (1646-1716)	
 Machine operating on concepts, not r 	umbers

٠	The mind manipulates knowledge
۲	Where does the knowledge come from?
٠	It all starts at the senses, so perception is key!
٠	And finally, we need action, as part of this picture of the mind

N	Mathematics	
	Logic: Boolean logic (Boole, 1847)	
	Logic: First-order logic (Frege, 1879)	
	Computation: Intractability (1960s)	
	 Computation time grows exponentially with instance size 	
	Computation: NP-completeness (Cook, 1971)	
	We can identify the really hard problems	
	Probability (Cardano, 1501-1576)	
	 Using new evidence (Bayes, 1702-1761) 	

Economics
 Rationality leading to preferred outcomes or utility (Walras, 1834-1910)
Decision Theroy
 Combines Probability Theory and Utility Theory (environment and individual)
Game Theory
 Decision Theory with other rational agents in the environment
Operations Research
 Sequence of decisions and not immediate payoffs

Neuroscience	
The brain seems to "cause minds"!	
 Collection of simple cells leads to thou and consciousness – exactly how is st 	ight, action ill mistery
 Areas of the brain seem to map to cog functions or body parts, yet this can c 	gnitive hange
There are 10 ¹¹ neurons in the brair	η,
CPUs will reach that number of gat 2020 according to Moore's Law	es around
But in the brain, all units are active simultaneously!	

Ps	ychology
	Pehaviarism (Wetson 1979 1059)
	 We can only study the stimulus and response. Knowledge, beliefs, goals and reasoning is "folk psychology"
۲	Cognitive Psychology (James, 1842-1910)
	The brain as an information-processing device
	 Beliefs and goals just as scientific as pressure (Craik, 1943)
٠	Cognitive Science (MIT Workshop, 1956)
	Computer models addressing psychology

Control Theory and Cybernetics
 First, only living things could modify behavior in response to changes in environment! Water Clock (Ktesibios, 250 BC) Kept water running at constant pace Thermostat (Drebbel, 1572-1633) Steam Engine Governor (Watt, 1736-1819) Control Theory and Cybernetics Wiener (1894-1964) looking at control and cognition Mental mechanism trying to minimize error, a challenge to behaviorism

UC	ontrol Theory and Cybernetics
۲	Modern Control Theory, especially stochastic optimal control tries to maximize an objective function over time
۲	Optimal behavior, like the rational agents
٢	Why not the same field?
۰	Al breaks out of the math of control theory and considers "softer" things like language, vision and planning

.ir	nguistics
٠	Behaviorist theory does not address creativity in language
۲	Chomsky (1957) explains this creativity with
	syntactic structures, going back to Panini (350 BC), formal enough for programming
۰	Computational Linguistics
	 Has to deal with the context of understanding and producing language
	Therefore connected with Knowledge

4	Warren McCulloch and Walter Pitts
4	 ON or OFF, depending on enough stimulation by neighboring neurons
	All logical connectives (AND, OR, NOT) could be implemented by simple nets
4	Suggested that these could also be made to "learn"

50s: Exciting Early Years
 General Problem Solver (Newell and Simon, 1957)
Geometry Theorem Prover (Gelernter, 1959)
Checkers players (Samuel, 1956-)

1958: Good	I Year for McCarthy
 The Lisp pro 	gramming language
Time sharing	g (multiple users on a computer)
Describes hy	pothetical "Advise Taker"
Knowledge	representation and reasoning

{	80s: Industrial AI Boom
•	DEC XCON Expert System saved
	them \$40 million per year in 1986!
	By 1988 DEC's Al group had 40 expert systems deployed.
	Nearly every major US corporation established their own AI group and was using or looking into expert systems.
	Extravagant promises, but failure to deliver in the end caused a new "AI Winter".

Output from the DEC XCON Exp	pert System, 1982
	2 2017 100 107 100 107 100 107 100 107 100 107 100 107 100 107 100 107 100 107 100 107 100 100
	40 2 Figure 2 A control of

π	JS: AI Becomes a Science
٢	Gone back to existing theories to build a
	strong foundation – comparing methods
٢	Example
	Hidden Markov Models (HMMs) based on math
	 Bayesian Networks based on neural nets
۲	Resurgence of formalization and
	specialization has lead to isolation of more
	"cutting edge" work like vision and robotics

Agents provide an opportunity to work on a complete AI system, across approaches

