First-Order Logic

Russell and Norvig: Chapter 8, Sections 8.1-8.3

Outline

Why FOL?

Syntax and semantics of FOL

Using FOLWumpus world in FOL

Propositional logic, pros and cons

© Propositional logic is declarative

- © Propositional logic allows partial (disjunctive/negated) information
 - (unlike most data structures and databases)
- © Propositional logic is compositional:
 - meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$

Why not use Natural Language?

- It serves a different purpose:Communication
- rather than representation

 It is not compositional
 - Context matters
- □ It can be ambiguous
 - Again, context matters

Create a new language

□ Builds on propositinal logic

□ But is inspired by natural language!

First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, ...
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
 - Functions: father of, best friend, one more than, plus, ...

Syntax of I	FOL: Basic elements
Constants	KingJohn, 2, NUS,
Predicates	Brother, >,
Functions	Sqrt, LeftLegOf,
Variables	x, y, a, b,
Connective	$\neg, \Rightarrow, \land, \lor, \Leftrightarrow$
Equality	=
Quantifiers	∀,∃

Atomic sentence	9 =	predicate (term ₁ ,,term _n) or term ₁ = term ₂
Term	=	function (term ₁ ,,term _n) or constant or variable
Examples:		

Complex sentences

Complex sentences = Made from atomic sentences using connectives

 $\neg S_{1} \quad S_{1} \land S_{2'} \quad S_{1} \lor S_{2'} \quad S_{1} \Rightarrow S_{2'} \quad S_{1} \Leftrightarrow S_{2'}$

Examples:

 $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)$

>(1,2) ∨ ≤ (1,2)

<(1,2) ^ ¬ >(1,2)

A common mistake to avoid

 \Box Typically, \Rightarrow is the main connective with \forall \Box Common mistake: using \land as the main connective with \forall :

 $\forall x At(x, HR) \land Smart(x)$

means "Everyone is at HR and everyone is smart"

Existential quantification

□ ∃<variables> <sentence>

Someone at HR is smart: $\exists x \operatorname{At}(x, \operatorname{HR}) \land \operatorname{Smart}(x)$

 $\exists x P \text{ is true in a model } m \text{ iff } P \text{ is true with } x \text{ being some possible object in the model }$

□ Roughly speaking, equivalent to the disjunction of instantiations of *P* At(KingJohn,HR) ∧ Smart(KingJohn) ∨ At(Richard,HR) ∧ Smart(Richard) ∨ At(HR,HR) ∧ Smart(HR)

v

Another mistake to avoid $\hfill Typically, \hfill \land$ is the main connective with \exists \Box Common mistake: using \Rightarrow as the main connective with \exists : $\exists x \operatorname{At}(x, \operatorname{HR}) \Rightarrow \operatorname{Smart}(x)$ is true if there is anyone who is not at HR!

$\forall x \forall y \text{ is the same as } \forall y \forall x$ $\exists x \exists y \text{ is the same as } \exists y \exists x$
∃x ∀y is not the same as ∀y ∃x ∃x ∀y Loves(x,y) ■ "There is a person who loves everyone in the world"
∀y ∃x Loves(x,y) ■ "Everyone in the world is loved by at least one person"
Quantifier duality: each can be expressed using the other ∀x Likes(x,IceCream) –3x –Likes(x,IceCream) ∃x Likes(x,Broccoli) –7X –Likes(x,Broccoli)

□ $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g., definition of *Sibling* in terms of *Parent*: Vx v Sibling(x v) C

 $\begin{array}{l} \forall x,y \; Sibling(x,y) \Leftrightarrow \\ [\neg(x=y) \land \; \exists m, f \neg \; (m=f) \land {\sf Parent}(m,x) \land \\ {\sf Parent}(f,x) \land {\sf Parent}(m,y) \land \; {\sf Parent}(f,y)] \end{array}$

