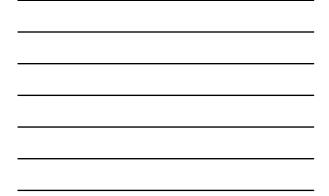


	Backtracking Algorithm
CSP-	BACKTRACKING(A)
1	If assignment A is complete then return A
2	X ← select a variable not in A
3.	$D \leftarrow$ select an ordering on the domain of X
4	For each value v in D do
	b. If A is valid then result ← CSP-BACKTRACKING(A)
	ii. If result ≠ failure then return result
	c. Remove (X < y) from A
5.	Return failure
Call (SP-BACKTRACKING({})
[This re An itero	cursive algorithm keeps too much data in memory. Stive version could save memory]

	Cr	iti	ca		Que	est	io	ns	f	or	t	he		
Ef	fic	iel	ncy	' 0	f	CS	P -	Bo	IC	kt	ra	ck	ing)
CCD		<i>с</i> ил		C 14	.	~ ()								
	If	ass	ignn	en	t A	is co	mp			ien	re	turn	A	-
			71-6	-		iable derii	(****		<pre>()</pre>	doi	nai	n of	×	-
4.		a. A	Add ()	(← v)	to A		do							
				sult	€ CS	SP-BA								
		c. F	Remo	1e ()	X←v)	failur) fron	لممذ	enre	etur	n re	SUIT			
5.	Re	turi	n fai	lur	e								- <u>i</u>	-+-

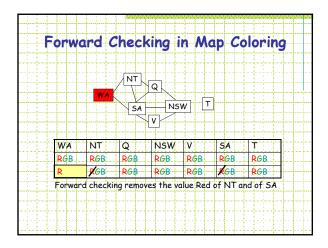
		+	<u> </u>			<u>}</u>						-	<u>}</u>		t	-			-	·	÷	÷	}	t	1
		-(Cr	i	Fie	ce	1	(Q	Je	s	t	0	n	5	f	0	ρ.	t	h	5	÷			-
	E																					n	2		
							7		•										-				7		
1)	N	h	cł	11	a	rio	зb	le	X	S	h	bu	ld	Ь	e	as	si	aı	ne	d	a	vo	du	e	_
		x														-		5					-		
																ļ									
						ļ	ļ							Ļ							ļ				-
		-				-									-						+	<u>.</u>			
2)	Iı		h				4	-				4	V	-		1.					-			4	5
(٢	11	1 1	VFI	C		or	Ge	sı.	5	10	ш	a	^	5	vc	110	e.	5 1)e	G	55	ig	rie	su	1
																							į		
													į								<u> </u>				-
		+																			+	÷			-
		+		-																	-	÷			h
		4	\$		÷	·								i		÷					÷		÷	Ş	



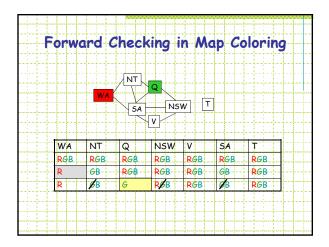
		Cni	tica	10		stio	ne	For	the		
			enc								
1)	Wł		vario	ble	X sł	nould	bed	issig	ned	a valu	e
	The but rigi	e curr	algori 'iable	ssigi thm X m	nmen does ay he	t may not l lp di	not l now i cove	ead 1 t yet t the	o any Sele contr	soluti ecting radicti	on, the on
2)	In	whic	h or	der	shou	ıld X	s va	ues	be a	ssigne	ed?
			1 1 1	1 1			1 1 1				

++								-		-	-	•	-		. 1		-			
++		Cri	tic	2	(R	Je	:51	10	n	S	t	Ol	n	tl	ne	2	-+		
	Eff	ici	en	C	10	f	7	25	P.	F	20	C	k	r	a	c	ci	no		
				~,											-		•••	2		
1)	Wh	ich	var	ia	hle	X	<	ho		h	0	as	si	0	ne	d	a 1	val	ne	-
	nex		-	-7							-			9.		-				-
	The		'en	t à	ssio	nn	nei	nt r	nav	n	o†	le	ad	to		inv	S	olu	tio	n
	but																			
	righ																			
	more					·~/		0.0	-								~			
2)	Inv	hic	h	n	lor	حا	20	ulc		c	vo	ı.	0	2 F	0	0	~~	io	200	-
-1																				
	The Sele	curi			5519	r (r (r	IEI		nay		e i	וגנ	+-	V	u	50	nu L		<i>n</i> .	
	disc												10	^	n	ιuγ		eih		_
	uisc	over	11	15 5	solu	110	m	moi	е (qui	CK	ıγ						_	_	
									+-		-									_
<u>+</u> +		ļ	+						. <u>.</u>	ļ										
									1	1										

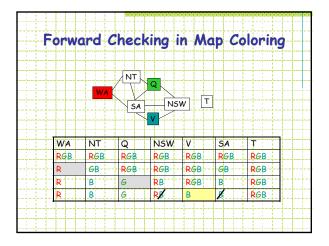
++		C	H	Fł	çe	H	(RI	le	25	T	ю	n	5	T	0	P	T	n	5	÷	1-	
	Ef	fi	cie	er	C	Y	C	f	(C.	51	2.	E	30	C	k.	tr	a	c	ki	n	9	
1)	W	hic	h	va	ric	зb	le	X	5	h	bu	ld	Ь	e	as	S	q	ne	d	a	vo	lu	e
		xt?											1		1		7			-		1	
	Th	e ci	Jrr	en	t d	15:	siq	nn	ne	nt	m	ay	n	o†	le	ac	t	0.0	iny	15	ol	uti	on
	bu	t th	e.c	ılg	or	itł	ım	d	be	51	10	t k	n	w	i†	y	21,	S	elí	ec	tir	ig.	th
4-4	rig	ht ۱	var	ial	ble	X	(n	1a)	/ k	iel	p.	dis	ico	v	şr.	ťk	e	co	n†	ra	di	¢†i	on
++	mo	re (qui	¢k	Y																<u>.</u>		
2)	In	wł	hic	h	or	de	er	s	ho	ul	d	X	s	vo	ilı	e	5	be	a	ss	ig	ne	d
+	Th	e ci	ırr	en	† (15:	sig	nn	ne	nt	m	ay	Ь	el	a	*†	of	a	SC	lu	tio	on.	
$^{++}$	Se	lect	tim	11	he	r	igł	n†	va	hu	e 1	to	as	si	'n	tc	Х	m	ay	/h	el	p	
	dis	cov	er	th	is	SC	Ju	tic	'n	m	pr	e (jui	ck	ly								-
]]]																				
Mo	re o	n th	105	0		25	tic	ns	v	er	v	SO	n	I.,									1

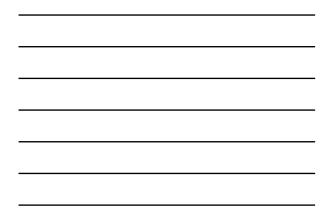


\vdash				-+					-	-			-				-		-	-			
	_				-	F	0	r	W	a	rc		Cl	ne	c	k	in	g					
As	sii	m	ole	2.0	:0	ns	:tr	ai	in	t-1	oro	pa	ga	tic	on	te	ect	nni	qı	le:			
1	L	_				D													-				
ć	-				D						As												
	3								3		lec												
4	· _										th	гd	om	air	15 0	of	Χ,	. X	2.		X.		
5		t	4	Å	X	Ľ	Ň	Ľ.									-		2.				
e	5								_			_								1.1			
			_						_										ļ				
		4		Ļ															ļ	ļ;			
	>	$\langle 1 \rangle$	(₂)	<3 X	< ₄ :	X ₅	X ₆	X_7	X ₈						-+								
												-+-	+			-			<u> </u>	ļ			
																			<u></u>				
													Ļ						Ļ	ļ;			
1.1																			t -	1 1		1	



rorw	ara (neci	king i	n M	ap co	plori	ng
		NT		CO	nstraint	grapn	
	WA	$\langle - + \rangle - \rangle$	Q				
			NS	W T	7		
		SA	145	*v	_		
			V				
			V				
WA	NT		V NSW	V	SA	17	
····		Q	NSW		SA	-	
WA RGB	NT RGB			V RGB	SA RGB	T RGB	
····		Q	NSW			-	
····		Q	NSW			-	
····		Q	NSW			-	
····		Q	NSW			-	
····		Q	NSW			-	





Jack Jack	ara (Checl	king i	nM	ap c	olor
		pty se {(WA es not	← R), (Q ← G), (V ∢	ignme - B)}
WA	NT	Q	NSW	v	SA	T
RGB	RGB	RGB	RGB	RGB	RGB	RGB
R	GB	RGB	RGB	RGB	- GB	RGB
1 1 1	В	G	RB	RGB	В	RGB
R		G	RØ	B	1	RGB

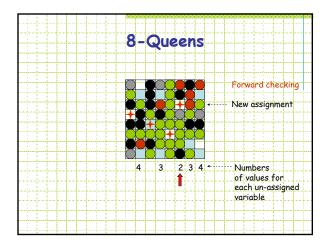
Forward Checking (General Form) Whenever a pair (X < v) is added to assignment A do For each variable Y not in A do: For every constraint C relating Y to the variables in A do: Remove all values from Y's domain that do not satisfy C			<u>↓</u>					
For each variable Y not in A do: For every constraint C relating Y to the variables in A do: Remove all values from Y's domain	F	orwo	ard	Che	ckin	g (G	eneral	Form)
For every constraint C relating Y to the variables in A do: Remove all values from Y's domain	Whe	enever	a pai	r (X←	v) is a	dded t	o assigni	ment A do
the variables in A do: Remove all values from Y's domain	F	or eac	h var	iable	Y not	in A c	lo:	
							lating Y	to
that do not satisfy C								main
			that	do n	ot sat	isfy C		
								+
				1		1-1-1-		
	++		+-+			++-		

	Modified Backtracking
	Algorithm
CSP-	BACKTRACKING(A, var-domains)
1.	If assignment A is complete then return A
2.	X ← select a variable not in A
3.	$D \leftarrow$ select an ordering on the domain of X
4.	For each value v in D do
	b. var-domains \leftarrow forward checking(var-domains, X, v, A) c. If a variable has an empty domain then return failure
	d. result ← CSP-BACKTRACKING(A, var-domains)
	e. If result≠failure then return result
5.	f. Remove (X <v) a<br="" from="">Return failure</v)>

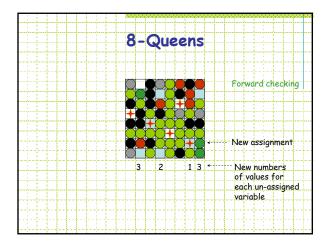
	Modified Backtracking
	Algorithm
CSP-	BACKTRACKING(A, var-domains)
	If assignment A is complete then return A
2.	X ← select a variable not in A
3.	D ← select an ordering on the domain of X
	For each value v in D do No need any more to
	 a. Add (X ← v) to A b. var-domains ← forward checking(var-domains, X, v, A
+ + + +	c. If a variable has an empty domain then return failure
+-+-+-	d. result ← CSP-BACKTRACKING(A, var-domains)
	e. If result≠failure then return result
	f. Remove (X↔v) from A
5.	Return failure

	Modified Backtracking
	Algorithm
	BACKTRACKING(A, var-domains)
	If assignment A is complete then return A
2.	
3.	D \leftarrow select an ordering on the domain of X
4.	For each value v in D do a. Add (X ← v) to A
	b. var-domains ← forward checking(var-domains, X, v, A)
	 c If a variable has an empty domain then return failure d, result ← CSP-BACKTRACKING(A, var-domains)
	e. If result≠failure then return result f. Remove (X4v) from A
5.	

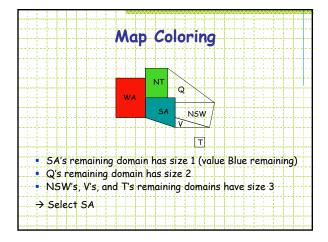
Modified Backtracking Algorithm	
Algorithm	
CSP-BACKTRACKING(A, var-domains)	
1. If assignment A is complete then return	n A
 X ← select a variable not in A 	
3 . D \leftarrow select an ordering on the domain of	×
 For each value v in D do a. Add (X ≤ y) to A 	
 b. var-domains ← forward checking(var-domains, 	
 c. If a variable has an empty domain then return d. result ← CSP-BACKTRACKING(A, var-domains) 	
e. If result≠failure then return result f. Remove (X€v) from A	
5. Return failure	



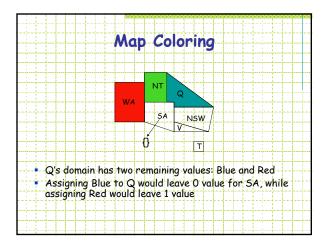
next	?		e assigned a value
→ M	ost-constru ost-constru	ined-variab ining-variat	ole heuristic ole heuristic
assia	ned?	should its v aining-value	
These I	neuristics c	an be quite	confusing
Keep in get a vo must be	mind that a slue, while o e assigned t	all variables inly <mark>one</mark> valu io each varia	r must eventually je from a domain able



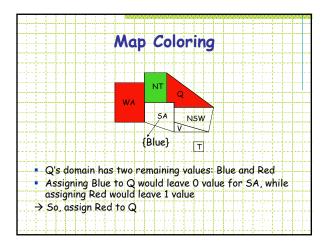
			_		_		-	1									1				
		M	os	t	-(01	15	tr	a	ine	d	-	V	ar	ric	ıþ	le	÷			-
							Η	e	ur	ist	ic					-	-				-
1)	W	hic	:h v	vai	ric	ible	zΧ	(₁ 5	sha	oulo	łŁ	be	a	ss	igr	iec	d a	V	alu	ie	
	ne	X‡.	?								-			_	-	-	-				-
	Se	ele	c†	t	he	e ve	ar	ia	Ы	e n	/it	h	t	٦e	: \$	m	all	es	5†		~
	re	m	ain	in	9	do	m	aiı	n		-		-	_			-	-	-		
	[R	ati	on	ale	2:	Mir	nin	١iz	e	the	b	ra	n	:h	ing) f	ac	to	r]		
				-			-				-		-				-				
			-				-				-		-				-				
		-	-	-				-			-	-		_				-			_
			j	<u>†</u>							<u> </u>							· · · · ·	<u>.</u>		



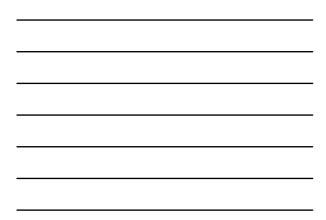
	Most-Constraining-Variable
	Heuristic
1)	Which variable X, should be assigned a value hext?
	Among the variables with the smallest remaining domains (ties with respect to
	the most-constrained-variable heuristic) select the one that appears in the
	largest number of constraints on variables not in the current assignment
	[Rationale: Increase future elimination of values, to reduce future branching factors]



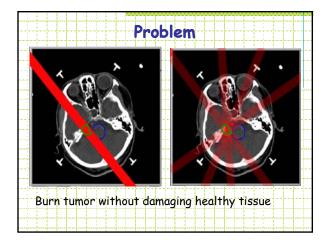
1.1			_					5656			***					-										~
			+				٨	٨	10		C	0	0	r	ir	IC								_		
		-	+						-							-										
		_								1	NΤ															
	-		-			_		WA				1	Q				1					_		-		
	+		-			_			-		SI	4	V	N.	51	1										
			-	-		-		-							т							_		-		-
	B	se ar	fo	re ble	an 25	y ha	val ive	ue	h da	as om	b ai	n n	en of	a	ss iz	ic e	ne 3	ed t	, c out		54	ł i	s			
	-iı	nv	ol	vec	l ir	11	noi	re	С	ons	5†	ra	lin	†s	(5)) †	ha	ın	a	ny	0	th	e	•	
	> :	Se	ele	ct	S	A	an	d c	ISS	sig	n	a	vc	ılu	e	te	o i	t	(e	g	, I	Bl	ue)		-
T.			Ť						1		•••															



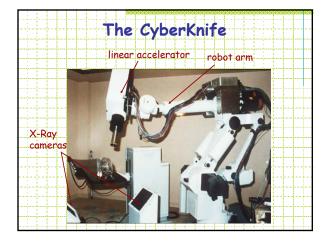
ļ	ļ						1					_											
L	ea	st-	C	or	۱Ś	tr	ai	n	in	a	_ \	4	al	U	2	F	le	u	ri	S	ti	С	
-+-	+			-+	+		+			2										-			-
2)	In	wh	ich	0	r¢	ler	s	10	ul	d 2	Χ'	5 \	/a	lu	es	b	e	as	SS	igi	ne	ď.	þ
										-													
		elec																			тr	ıe	-
+		nall																					F
	do	ma	ins	5 0	of	t	10	se	1	/a	ri	at	ble	25	V	vh	ic	:h	a	ir	e		
		t ir																					
				110	-	- 41				u.		'9			5							ļ	
	TR	atio	na	le:	ę	Sin	ce.	or	٦l	10	n	2.1	'n	lu	e. 1	wi	П	ev	ie.	nt	uc	١ŀ	v
1	he	ass	sia	nei	ď	to	x	n	ic	k	th	0	le	n<	+-	c	 n	51	r	ir	in	n	1
	Va	lue	fir	ct		sin	~	it	is	+	h	2	nc	10	÷ I	ik	0	<i>.</i>	no	t.	te	3	
		id t													' '	'n	C1	y	10		i C	L.,	L
	iec	ia T	φα	ur I	m	vai	a	as	551	g	m	e	ri I	J					ļ				
	IN	ote:	Us	ing	i ti	his	he	ur	ist	tic	re	zqu	uir	es	p	er	fo	rn	nin	g	a		
- T									1				L		1.			1	·	-	1	ļ	ł
	for	war	d-c	:he	ck	kinc	15	rer	1	or	e١	/er	ſУ	VC	uu	ε,	rio	Τ.	Jus	ST	†0	r	



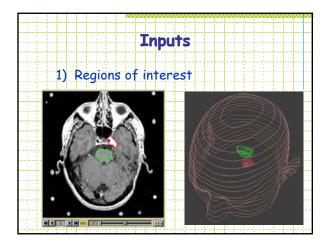
		Backtracking
	Al	gorithm
	CSP-B	ACKTRACKING(A, var-domains)
		If assignment A is complete then return A
	3.	
- <u>+</u> {}		For each value v in D do
	trained-variable heuristic training-variable heuristi	C var-domains ← forward checking var-domains X v.
		c. If a variable has an empty domain then neturn fillure
3) Least-cons	training-value heuristic	d. result ← CSP-BACKTRACKING(A, var-domains)
	5	e. If result # failure then return result f. Remove (X <v) a<br="" from="">Return failure</v)>
	J. J	Return tenune
and and and and a start of the		

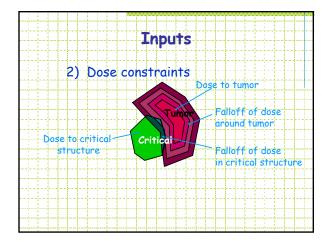


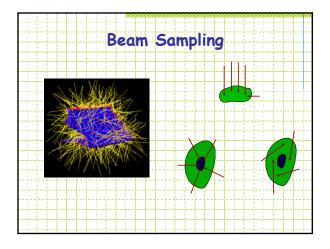
		Aţ	pli	ca	tio	ns	01		S	>	
С	SP	tec	hni	que	s a	re۱	vid	ely	us	ed	
A	pp	lica	tion	s ir	Iclu	de:			_		
•	Ċr	ew a	issic	nme	ents	s to	flig	ht	5		÷
- •	M	anag	eme	nt c	of †	rans	spor	'ta	tion	fle	et
•	Fli	ght.	/rail	scł	nedi	lles					
•	Jo	b sł	iop s	sche	dul	ing		+		+	+
•	Τa	isk s	che	duli	ng i	n po	ort c	ope	rati	ons	
•	De	sigr	i, ind	clud	ing	spa	tial	lay	out	des	ign
•	Ra	dios	urgi	cal	pro	ced	ure	S.			

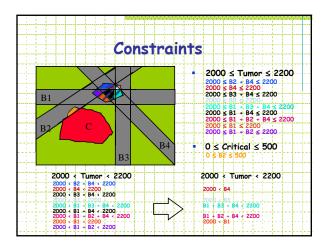


	Radiosurger	Υ
Minimally i	nvasive procedui	re that uses a
	diation as an ab	
instrument	to destroy tum	ors
Tumor = bad	Î PÎ	• Critical structures = good and sensitive
Brain = good	A CONTRACT	









			1
C	ase Resul	ts	
	50% Isodose		•••••
	Surface		
	80% Isodose		
	Surface		
LINAC system		Cyberknife	

