
1

Constraint Satisfaction Constraint Satisfaction
Problems (CSP)Problems (CSP)

Part BPart BPart BPart B

R&N: Chap. 5

Slides from Jean-Claude Latombe at Stanford University
(used with permission)

Backtracking Algorithm
CSP-BACKTRACKING(A)

1. If assignment A is complete then return A
2. X select a variable not in A
3. D select an ordering on the domain of X
4. For each value v in D do

dd () a. Add (X v) to A
b. If A is valid then

i. result CSP-BACKTRACKING(A)
ii. If result ≠ failure then return result

c. Remove (X v) from A
5. Return failure

Call CSP-BACKTRACKING({})
[This recursive algorithm keeps too much data in memory.
An iterative version could save memory]

Critical Questions for the
Efficiency of CSP-Backtracking

CSP-BACKTRACKING(A)
1. If assignment A is complete then return A
2 X select a variable not in A2. X select a variable not in A
3. D select an ordering on the domain of X
4. For each value v in D do

a. Add (X v) to A
b. If a is valid then

i. result CSP-BACKTRACKING(A)
ii. If result ≠ failure then return result

c. Remove (X v) from A
5. Return failure

2

Critical Questions for the
Efficiency of CSP-Backtracking

1) Which variable X should be assigned a value
next?
The current assignment may not lead to any solution,
but the algorithm still does know it. Selecting the
right variable to which to assign a value may help g g y p
discover the contradiction more quickly

2) In which order should X’s values be assigned?
The current assignment may be part of a solution.
Selecting the right value to assign to X may help
discover this solution more quickly

More on these questions in a short while ...

Critical Questions for the
Efficiency of CSP-Backtracking

1) Which variable X should be assigned a value
next?
The current assignment may not lead to any solution,
but the algorithm does not know it yet. Selecting the
right variable X may help discover the contradiction g y p
more quickly

2) In which order should X’s values be assigned?
The current assignment may be part of a solution.
Selecting the right value to assign to X may help
discover this solution more quickly

More on these questions in a short while ...

Critical Questions for the
Efficiency of CSP-Backtracking

1) Which variable X should be assigned a value
next?
The current assignment may not lead to any solution,
but the algorithm does not know it yet. Selecting the
right variable X may help discover the contradiction g y p
more quickly

2) In which order should X’s values be assigned?
The current assignment may be part of a solution.
Selecting the right value to assign to X may help
discover this solution more quickly

More on these questions in a short while ...

3

Critical Questions for the
Efficiency of CSP-Backtracking

1) Which variable X should be assigned a value
next?
The current assignment may not lead to any solution,
but the algorithm does not know it yet. Selecting the
right variable X may help discover the contradiction g y p
more quickly

2) In which order should X’s values be assigned?
The current assignment may be part of a solution.
Selecting the right value to assign to X may help
discover this solution more quickly

More on these questions very soon ...

Forward Checking

Assigning the value 5 to X1
l d t i l f

1
2
3

A simple constraint-propagation technique:

leads to removing values from
the domains of X2, X3, ..., X8

3
4
5
6
7
8

X1 X2 X3 X4 X5 X6 X7 X8

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

Constraint graph

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB

4

T
WA

NT

SA

Q

NSW

V

Forward Checking in Map Coloring

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB

Forward checking removes the value Red of NT and of SA

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R GB G RGB RGB GB RGB

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

5

Forward Checking in Map Coloring

Empty set: the current assignment
{(WA R), (Q G), (V B)}

does not lead to a solution

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Forward Checking (General Form)

Whenever a pair (X v) is added to assignment A do:
For each variable Y not in A do:

For every constraint C relating Y to
the variables in A do:the variables in A do:

Remove all values from Y’s domain
that do not satisfy C

Modified Backtracking
Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X select a variable not in A
3. D select an ordering on the domain of X. D g m f X
4. For each value v in D do

a. Add (X v) to A
b. var-domains forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result CSP-BACKTRACKING(A, var-domains)
e. If result ≠ failure then return result
f. Remove (X v) from A

5. Return failure

6

Modified Backtracking
Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X select a variable not in A
3. D select an ordering on the domain of X. D g m f X
4. For each value v in D do

a. Add (X v) to A
b. var-domains forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result CSP-BACKTRACKING(A, var-domains)
e. If result ≠ failure then return result
f. Remove (X v) from A

5. Return failure

No need any more to
verify that A is valid

Modified Backtracking
Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X select a variable not in A
3. D select an ordering on the domain of X. D g m f X
4. For each value v in D do

a. Add (X v) to A
b. var-domains forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result CSP-BACKTRACKING(A, var-domains)
e. If result ≠ failure then return result
f. Remove (X v) from A

5. Return failure Need to pass down the
updated variable domains

Modified Backtracking
Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X select a variable not in A
3. D select an ordering on the domain of X. D g m f X
4. For each value v in D do

a. Add (X v) to A
b. var-domains forward checking(var-domains, X, v, A)
c. If a variable has an empty domain then return failure
d. result CSP-BACKTRACKING(A, var-domains)
e. If result ≠ failure then return result
f. Remove (X v) from A

5. Return failure

7

1) Which variable Xi should be assigned a value
next?

Most-constrained-variable heuristic
Most-constraining-variable heuristic

2) In which order should its values be
assigned?assigned?

Least-constraining-value heuristic

These heuristics can be quite confusing

Keep in mind that all variables must eventually
get a value, while only one value from a domain
must be assigned to each variable

Most-Constrained-Variable
Heuristic

1) Which variable Xi should be assigned a value
next?

Select the variable with the smallest
 dremaining domain

[Rationale: Minimize the branching factor]

8-Queens

New assignment

Forward checking

4 3 2 3 4 Numbers
of values for
each un-assigned
variable

8

8-Queens

Forward checking

3 2 1 3 New numbers
of values for
each un-assigned
variable

New assignment

Map Coloring

WA

NT

SA

Q

NSW

WA

NT

SA

SA’s remaining domain has size 1 (value Blue remaining)
Q’s remaining domain has size 2
NSW’s, V’s, and T’s remaining domains have size 3

Select SA

V

T

Most-Constraining-Variable
Heuristic

1) Which variable Xi should be assigned a value
next?

Among the variables with the smallest
remaining domains (ties with respect to remaining domains (ties with respect to
the most-constrained-variable heuristic),
select the one that appears in the
largest number of constraints on
variables not in the current assignment
[Rationale: Increase future elimination of
values, to reduce future branching factors]

9

Map Coloring

WA

NT

SA

Q

NSWSA
V

T

Before any value has been assigned, all
variables have a domain of size 3, but SA is
involved in more constraints (5) than any other
variable
Select SA and assign a value to it (e.g., Blue)

Least-Constraining-Value Heuristic
2) In which order should X’s values be assigned?

Select the value of X that removes the
smallest number of values from the
domains of those variables which are
not in the current assignmentnot in the current assignment

[Rationale: Since only one value will eventually
be assigned to X, pick the least-constraining
value first, since it is the most likely not to
lead to an invalid assignment]
[Note: Using this heuristic requires performing a
forward-checking step for every value, not just for
the selected value]

Map Coloring

WA

NT

SA

Q

NSW

WA

NT

{}
V

T

Q’s domain has two remaining values: Blue and Red
Assigning Blue to Q would leave 0 value for SA, while
assigning Red would leave 1 value

10

Map Coloring

WA

NT

SA

Q

NSW

WA

NT

{Blue}
V

T

Q’s domain has two remaining values: Blue and Red
Assigning Blue to Q would leave 0 value for SA, while
assigning Red would leave 1 value
So, assign Red to Q

Modified Backtracking
Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X select a variable not in A
3. D select an ordering on the domain of X
4. For each value v in D do

a. Add (X v) to A
b. var-domains forward checking(var-domains, X, v, 1) Most-constrained-variable heuristic b. var domains forward checking(var domains, X, v,

A)
c. If a variable has an empty domain then return

failure
d. result CSP-BACKTRACKING(A, var-domains)
e. If result ≠ failure then return result
f. Remove (X v) from A

5. Return failure

2) Most-constraining-variable heuristic

3) Least-constraining-value heuristic

Applications of CSP

CSP techniques are widely used
Applications include:
• Crew assignments to flights
• Management of transportation fleetManagement of transportation fleet
• Flight/rail schedules
• Job shop scheduling
• Task scheduling in port operations
• Design, including spatial layout design
• Radiosurgical procedures

11

Radiosurgery

Minimally invasive procedure that uses a
beam of radiation as an ablative surgical
instrument to destroy tumors

Tumor = bad

Brain = good

Critical structures
= good and sensitive

ProblemProblem

Burn tumor without damaging healthy tissue

The CyberKnife
linear accelerator robot arm

X-Ray
cameras

12

InputsInputs

1) Regions of interest

Inputs

2) Dose constraints

Tumor

Dose to tumor

Falloff of dose
around tumor

Critical
around tumor

Falloff of dose
in critical structure

Dose to critical
structure

Beam Sampling

13

Constraints
2000 ≤ Tumor ≤ 2200
2000 ≤ B2 + B4 ≤ 2200
2000 ≤ B4 ≤ 2200
2000 ≤ B3 + B4 ≤ 2200
2000 ≤ B3 ≤ 2200
2000 ≤ B1 + B3 + B4 ≤ 2200
2000 ≤ B1 + B4 ≤ 2200
2000 ≤ B1 + B2 + B4 ≤ 2200
2000 ≤ B1 ≤ 2200

T

C

B1

B2

T

2000 ≤ B1 ≤ 2200
2000 ≤ B1 + B2 ≤ 2200

0 ≤ Critical ≤ 500
0 ≤ B2 ≤ 500

CB2

B3
B4

2000 < Tumor < 2200
2000 < B2 + B4 < 2200
2000 < B4 < 2200
2000 < B3 + B4 < 2200
2000 < B3 < 2200
2000 < B1 + B3 + B4 < 2200
2000 < B1 + B4 < 2200
2000 < B1 + B2 + B4 < 2200
2000 < B1 < 2200
2000 < B1 + B2 < 2200

2000 < Tumor < 2200
2000 < B4

2000 < B3
B1 + B3 + B4 < 2200

B1 + B2 + B4 < 2200
2000 < B1

Case Results

50% Isodose
Surface

80% Isodose
Surface

LINAC system Cyberknife

