
1

Constraint Satisfaction Constraint Satisfaction
Problems (CSP)Problems (CSP)

(Where we postpone making difficult decisions(Where we postpone making difficult decisions
until they become easy to make)

R&N: Chap. 5

Slides from Jean-Claude Latombe at Stanford University
(used with permission)

What we will try to do ...

Search techniques make choices in some
order which often is arbitrary. Often little
state information is available to make each of
them (states are “black boxes”)

In many problems, the same states can be
reached independent of the order in which
choices are made (“commutative” actions)

Can we solve such problems more efficiently
by picking the order appropriately? Can we
even avoid making any choice? Do we have all
the information needed?

Constraint Propagation

Place a queen in a square
Remove the attacked squares from future
consideration

2

6
6
5
5

5 5 5 5 5 6 7

Constraint Propagation

5
5
6

Count the number of non-attacked squares in every row
and column
Place a queen in a row or column with minimum number
Remove the attacked squares from future consideration

3
4

4

4 3 3 3 4 5

Constraint Propagation

3
3
5

Repeat

4

3

3 3 3 4 3

Constraint Propagation

2
3
4

3

4

2

3 3 3 1

Constraint Propagation

2
1
3

2

2

2 2 1

Constraint Propagation

1

Constraint Propagation

2

1 2

1

4

Constraint Propagation

1

1

Constraint Propagation

What do we need?

More than just a successor function and a goal
test

We also need:
• A means to propagate the constraints imposed by • A means to propagate the constraints imposed by

one queen’s position on the positions of the other
queens

• An early failure test

Explicit representation of constraints
Constraint propagation algorithms

5

Constraint Satisfaction Problem (CSP)

Set of variables {X1, X2, …, Xn}
Each variable Xi has a domain Di of
possible values. Usually, Di is finite
Set of constraints {C1 C2 Cp}Set of constraints {C1, C2, …, Cp}
Each constraint relates a subset of
variables by specifying the valid
combinations of their values
Goal: Assign a value to every variable such
that all constraints are satisfied

Map Coloring

WA

NT

SA

Q

NSW
V

WA

NT

SA

Q

NSW
V

7 variables {WA,NT,SA,Q,NSW,V,T}
Each variable has the same domain:

{red, green, blue}
No two adjacent variables have the same value:

WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q,
SA≠NSW, SA≠V, Q≠NSW, NSW≠V

TT

8-Queen Problem

8 variables Xi, i = 1 to 8
The domain of each variable is: {1,2,…,8}
Constraints are of the forms:
• Xi = k Xj ≠ k for all j = 1 to 8, j≠i
• Similar constraints for diagonals

All constraints are binary

6

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house Who owns the Zebra?
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Who owns the Zebra?
Who drinks Water?

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
∀i,j∈[1,5], i≠j, Ni ≠ Nj

∀i j∈[1 5] i≠j C ≠ CThe Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

∀i,j∈[1,5], i≠j, Ci ≠ Cj
...

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house (Ni = English) ⇔ (Ci = Red)
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

(Ni = Japanese) ⇔ (Ji = Painter)

(N1 = Norwegian)

left as an exercise

(Ci = White) ⇔ (Ci+1 = Green)
(C5 ≠ White)
(C1 ≠ Green)

7

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house (Ni = English) ⇔ (Ci = Red)
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

(Ni = Japanese) ⇔ (Ji = Painter)

(N1 = Norwegian)

(Ci = White) ⇔ (Ci+1 = Green)
(C5 ≠ White)
(C1 ≠ Green)

unary constraints

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left N1 = Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk D3 = Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}

The Englishman lives in the Red house C1 ≠ Red
The Spaniard has a Dog A1 ≠ Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left N1 = Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk D3 = Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice J3 ≠ Violinist
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

8

Task Scheduling

Four tasks T1, T2, T3, and T4 are related by time constraints:
T st b d d i T

T1

T2

T3

T4

• T1 must be done during T3
• T2 must be achieved before T1 starts
• T2 must overlap with T3
• T4 must start after T1 is complete

Are the constraints compatible?
What are the possible time relations between two tasks?
What if the tasks use resources in limited supply?

How to formulate this problem as a CSP?

3-SAT

n Boolean variables u1, ..., un

p constrains of the form
u * ∨ u * ∨ uk*= 1ui ∨ uj ∨ uk = 1

where u* stands for either u or ¬u

Known to be NP-complete

Finite vs. Infinite CSP

Finite CSP: each variable has a finite
domain of values
Infinite CSP: some or all variables have
an infinite domainan infinite domain
E.g., linear programming problems over the
reals:

We will only consider finite CSP

=

≤
ni,ni,1 1 i,2 2 i,0

nj,nj,1 1 j,2 2 j,0

for i = 1, 2, ..., p : a x +a x +...+a x a
for j = 1, 2, ..., q : b x +b x +...+b x b

9

CSP as a Search Problem
n variables X1, ..., Xn

Valid assignment: {Xi1 vi1, ..., Xik vik}, 0≤ k ≤ n,
such that the values vi1, ..., vik satisfy all constraints
relating the variables Xi1, ..., Xik

Complete assignment: one where k = n
[if all variable domains have size d there are O(dn) [if all variable domains have size d, there are O(dn)
complete assignments]
States: valid assignments
Initial state: empty assignment {}, i.e. k = 0
Successor of a state:
{Xi1 vi1, ..., Xik vik} {Xi1 vi1, ..., Xik vik, Xik+1 vik+1}
Goal test: k = n

{Xi1 vi1, ..., Xik vik}

r = n−k variables with s values r×s branching factor

{Xi1 vi1, ..., Xik vik, Xik+1 vik+1}

A Key property of CSP:
Commutativity

The order in which variables are assigned values
has no impact on the reachable complete valid
assignments

Hence:Hence

1) One can expand a node N by first selecting
one variable X not in the assignment A
associated with N and then assigning every
value v in the domain of X
[big reduction in branching factor]

10

4 variables X1, ..., X4
Let the valid assignment of N be:

A = {X1 v1, X3 v3}
For example pick variable X4
Let the domain of X4 be {v4 1, v4 2, v4 3}4 { 4,1 4,2 4,3}
The successors of A are all the valid
assignments among:

{X1 v1, X3 v3 , X4 v4,1 }
{X1 v1, X3 v3 , X4 v4,2 }
{X1 v1, X3 v3 , X4 v4,2 }

{Xi1 vi1, ..., Xik vik}

r = n-k variables with s values r×s branching factor

{Xi1 vi1, ..., Xik vik, Xik+1 vik+1}

r = n−k variables with s values s branching factor

The depth of the solutions in the search tree is un-changed (n)

A Key property of CSP:
Commutativity

Hence:

The order in which variables are assigned values
has no impact on the reachable complete valid
assignments

1) One can expand a node N by first selecting
one variable X not in the assignment A
associated with N and then assigning every
value v in the domain of X
[big reduction in branching factor]

2) One need not store the path to a node
Backtracking search algorithm

11

Backtracking Search

Essentially a simplified depth-first
algorithm using recursion

Backtracking Search
(3 variables)

Assignment = {}

Backtracking Search
(3 variables)

X1

v11

Assignment = {(X1,v11)}

12

Backtracking Search
(3 variables)

X1

v11

X

Assignment = {(X1,v11), (X3,v31)}

v31

X3

Backtracking Search
(3 variables)

X1

v11

X
Then, the search algorithm

Assignment = {(X1,v11), (X3,v31)}

v31

X3

X2 Assume that no value of X2
leads to a valid assignment

backtracks to the previous (X3)
variable and tries another value

Backtracking Search
(3 variables)

X1

v11

X

Assignment = {(X1,v11), (X3,v32)}

X3

v32v31

X2

13

Backtracking Search
(3 variables)

X1

v11

X

The search algorithm
backtracks to the previous
variable (X3) and tries
another value. But assume
th t X h s l t

Assignment = {(X1,v11), (X3,v32)}

X3

v32

X2

Assume again that no value of
X2 leads to a valid assignment

that X3 has only two
possible values. The
algorithm backtracks to X1v31

X2

Backtracking Search
(3 variables)

X1

v11

X

v12

Assignment = {(X1,v12)}

X3

v32

X2

v31

X2

Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21)}

X3

v32

X2

v31

X2

v21

X2

14

Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21)}

X3

v32

X2

v31

X2

v21

X2

The algorithm need not consider
the variables in the same order in
this sub-tree as in the other

Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X3

v32

X2

v31

X2

v21

X2

v32

X3

Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X3

v32

X2

v31

X2

v21

X2

v32

X3
The algorithm need
not consider the values
of X3 in the same order
in this sub-tree

15

Backtracking Search
(3 variables)

X1

v11

X

v12

X

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X3

v32

X2

v31

X2

v21

X2

v32

X3
Since there are only
three variables, the
assignment is complete

Backtracking Algorithm
CSP-BACKTRACKING(A)

1. If assignment A is complete then return A
2. X select a variable not in A
3. D select an ordering on the domain of X
4. For each value v in D do

dd () a. Add (X v) to A
b. If A is valid then

i. result CSP-BACKTRACKING(A)
ii. If result ≠ failure then return result

c. Remove (X v) from A
5. Return failure

Call CSP-BACKTRACKING({})

