		1								5656	-		-							-		-	1			 ā
	;							}							}							}				
								ļ	L																	 -
												ļ					ļ							 		 -
- 1		-																								-
		1	٦,		n	C	+	r	2	•	h	÷		2		÷	ic	- f	-	-	-					 -
				ν		Б	J		Q		,	L		2	a	L	2	1	C	I		1	U	_		 ~
							-						_			1	0	C	-					 		
		-				F	4	C	J		ļĘ	7	H-	13)	f	U		H)		-			
	+-	ſΜ	/h	er	ρ	١٨/	ρ	nc	st	n	hn	ρ	m	ak	in	n	di	ffi	сī	ilt	d	Pr	isi	าร		 -
		1.0		C1	Č.				131	P.		<u> </u>	P	ui		y.	<u>с</u> ,				G.		13	13		 r
					-U	nt	tŀ	th	ey	/ ł	pe	CC	m	e	ea	isj	/ 1	0	m	al	(e)		~		Ê
	-	1	-	-										1			-									 1
		1							1																-	î
		1								R	&	Ν:	(Ch	ia	D.	5									
		<u> </u>																								
		-	L.					C1-							- C.		£ .		11.				1	 		 ۴.,
	511	ues	T	tor th	n J	ea	n-I		ua	еL	.ατ	om	De	đT	5	dn	ΤO	r.a	Ur	IIVe	2rs	пry		 		 -
	(us	eu	vVI		рe	141	135	ior	Υ.																	
-									ļ									h						 		 -

W	'hat	we	will	try	to	do	•
Sear	ch tea	hnique	es ma	ke cho	oices i	n some	
order	r whic	h ofte	n is a	rbitro	iry. O	ften lit	tle
state	infor	mation	1 is av	ailabl	e to n	nake ec	ich of
them	(stat	es are	"blac	k box	es")		
Inmo	any pr	oblem	s, the	same	state	s can t)e
react	ned in	depend	dent a	of the	order	' in whi	ch
choic	es are	e made	: ("coł	nmute	utive"	actions	3)
Can v	ve solv	e such	ı prot	olems	more	efficie	ntly
by pi	cking	the or	der a	pprop	riatel	/? Can	we
even	avoid	making	g any	choic	e? Do	we hav	e all
the i	nform	ation r	ieede	d?			

What do we need?
More than just a successor function and a goal
test
• We also need:
• A means to propagate the constraints imposed by
one queen's position on the positions of the other
queens
An early failure test
→ Explicit representation of constraints
→ Constraint propagation algorithms

Constraint Sat	isfact	tion Pro	oblem (CSP)
 Set of variable 	es {X ₁ ,	X ₂ ,, X	(_n }	
Each variable 2	X _i has	a domaii	n Di of	
possible values	s. Usua	illy, D _i is	finite	
Set of construct	aints {(C ₁ , C ₂ ,,	<i>C</i> _p }	
Each constrair	nt rela	tes a sul	oset of	
variables by sp	pecifyi	ng the v	alid	
combinations c	of thei	r values	++++	
Goal: Assign a	value	to every	variable	such
that all constr	aints a	are satis	fied	
		-+		

8-	Quee	en Probl	em
8 variables	: X _i , i =	1 to 8	
The domai	n of ea	ich variabl	e is: {1,2,,8}
Constraint	s are o	of the form	ns:
[• X _i = k →	Xi≠k	for all j =	1 to 8, j≠i
· Similar c	onstrai	ints for di	agonals
		+	
	nstrain	is are binar	Υ
		+	

Street Puzzle
 1 2 3 4 5
N, = (English, Spaniard, Japanese, Italian, Norwegian) C, = {Red, Green, White, Yellow, Blue}
J, = {Ted, Corree, Milk, Fruit-Juice, Water) J, = {Painter, Sculptar, Diplomat, Violinist, Doctor}
A, = {Dog, Snails, Fox, Horse, Zebra}
 The Englishman lives in the Red house Who owns the Zebra? The Spaniard has a Dog Who drinks Water?
The Italian drinks Tea The Norwegian lives in the first house on the left The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk The Norwegian lives next door to the Blue house The Violinist drinks Fruit juice
 The Fox is in the house next to the Doctor's The Horse is next to the Diplomat's

1 N; C; D;	Street P	UZZ	zle wegi	2 an}						
1 Ni Ci Di	- 2 - 3 4 - 5 - (English, Spanlard, Japanese, Italia - (Red, Green, White, Yellow, Blue) - (Tea, Coffee, Milk, Fruit- juice, Wo	in, Nor	wegi	an}			+-			
Ni Ci Di	= (English, Spaniard, Japanese, Italia = {Red, Green, White, Yellow, Blue} = {Tea, Coffee, Milk, Fruit-juice, Wo	in, Nor	wegi	an}						
Ci Di	= {Red, Green, White, Yellow, Blue} = {Tea, Coffee, Milk, Fruit-juice, Wo	-1-1-	4						11	
D,	Ted, Coffee, Milk, Fruit-juice, Wa				-	1		1	-+-	
		ster}				-+		ļ		
J	Painter, Sculptor, Diplomat, Violinis	st, Doc	tor}							
A,	{Dog, Snails, Fox, Horse, Zebra}			140	1 5	1	: N1		a	
Th	Englishman lives in the Red house		V	'ler	1,5	17	1.14	Ŧ	J	
Th	Spaniard has a Dog		A	J∉l	1,5	, 味	J, C _i	≠ C	j	
Th	Japanese is a Painter						1		1	-
Th	: Italian drinks Tea			-				-		
The	Norwegian lives in the first house o	n the le	eft							
The	owner of the Green house drinks Co	ffee								
The	Green house is on the right of the l	White H	louse							
The	Sculptor breeds Snails		1		1		1111	1		
Th	Diplomat lives in the Yellow house	-+	+							+
Th	owner of the middle house drinks Mi	ilk	+							
Th	Norwegian lives next door to the Blu	ue hous	e				1.			
Th	Violinist drinks Fruit juice								1	
The	Fox is in the house next to the Doc	tor's								
The	Horse is next to the Diplomat's					-+-+				-+

÷	
_	╞╍╬╍╏╍╞╍╏╍╞╍╎╍╞╍┝╍┼╍┠╍┨╍┠╍╎╍┠╸╬╍╬╍╂╍┠╍┠╍┠╸┠╸┼╸
	- 1 - 2 - 3 - 4 - 5
_	N; = {English, Spaniard, Japanese, Italian, Norwegian}
	C; = {Red, Green, White, Yellow, Blue}
	D, = {Ted, Coffee, Milk, Fruit-juice, Water}
	J, = {Painter, Sculptor, Diplomat, Violinist, Doctor}
	A, = {Dog, Snails, Fox, Horse, Zebra}
	The Englishman lives in the Red house $(N = English) \Leftrightarrow (C = Red)$
	The Spaniard has a Dog
	The Japanese is a Painter (N = Japanese) \Leftrightarrow (J = Painter)
	The Italian drinks Tea
	The Norwegian lives in the first house on the left (N1 = Norwegian)
	The owner of the Green house drinks Coffee
	The Green house is on the right of the White house
	The Sculptor breeds Snails
	The Diplomat lives in the Yellow house $(C = White) \Rightarrow (C = Gree$
	The owner of the middle house drinks Milk (Cr + White)
_	The Norwegian lives next door to the Blue house (C. + Green)
	The Violinist drinks Fruit juice
	The Fox is in the house next to the Doctor's left of an eventice
	The Honse is part to the Diplomat's

		Str	ee	t Pi	JZZ	le				
	2 3	4	5							
N _i = 1 C _i =	(English, Spo (Red, Green,	iniard, Ja White, Y	panese, /ellow,	Italian Blue}	, Norw	egian}				
D; = { J, = {	Tea, Coffee Painter, Scu	, Milk, Fr Iptor, Dip	uit-juic lomat,	e, Wat Violinist	er} Doct	or}				
A; = { The E	Dog, Snails, nglishman liv	Fox, Hor les in the	se, Zeb Red ho	ora} use	(1	Ni ≠ Ei	nglish)⇔(C	= Red)	
The S The S	Spaniard has Fapanese is d	a Dog 1 Painter		(N _i = .	Japane	se) 🖨	(J _i =	Painte	r)	
The I The I	talian drinks Jorwegian liv	Tea es in the	first ho	ouse on	the let	ft	(Þ	4 ₁ = No	rwegian))
The C The C	wner of the Freen house	Green ho is on the	use drir right of	the W	fee 'hite ho	ouse				
The S The I	Sculptor bree Diplomat live:	s in the Y	ellow ho	use		((C _i =	Whit	e) ⇔ (C _{i+1} = Gr	een
The N The N	lorwegian liv Iorwegian liv Iiolinist drinl	es next d	oor to t iice	nks Mill the Blue	house	(C ₅ ≠	Gree	n)		
The F The F	ox is in the lorse is next	house new to the D	ct to th iplomat	e Docto 's	or's			unary	constraii	nts

	Street Puzzle
1	UTI CCT I UZZIC
	N = {English, Spanjard, Japanese, Italian, Norwegian}
÷	C = {Red Green White Yellow Blue}
4	D. = {Tea, Coffee, Milk, Fruit-juice, Water}
	J. = {Painter, Sculptor, Diplomat, Violinist, Doctor}
	A, = {Dog, Snails, Fox, Horse, Zebra}
1	The Englishman lives in the Red house
	The Spaniard has a Dog
	The Japanese is a Painter
	The Italian drinks Tea
	The Norwegian lives in the first house on the left -> N1 - Norwegian
	The owner of the Green house drinks Coffee
1.1	The Green house is on the right of the White house
	The Sculptor breeds Snails
	The Diplomat lives in the Yellow house
	The owner of the middle house drinks Milk -> D3 = Milk
-1	The Norwegian lives next door to the Blue house
	The Violinist drinks Fruit juice
	The Fox is in the house next to the Doctor's
	in na he ban in a ban in a ban in an in a ban in

	┝╍┾╍┥╍┝╍┥╍┝╍┝╍┝╍┝╍┥╍┝╍┥╍┝╍┝╍┝╍┝╍┝╍┝╍┝╍┝╍
~~	Street Puzzie
	N = {English, Spaniard, Japanese, Italian, Norwegian}
	C; = {Red, Green, White, Yellow, Blue}
	D = {Ted, Coffee, Milk, Fruit-juice, Water}
	J, = {Painter, Sculptor, Diplomat, Violinist, Doctor}
	A; = {Dog, Snails, Fox, Horse, Zebra}
	The Englishman lives in the Red house $\rightarrow C_{\star} \neq \text{Red}$
	The Spaniard has a Dog $\rightarrow A_1 \neq Dog$
	The Japanese is a Painter
	The Italian drinks Tea
	The Norwegian lives in the first house on the left -> N; - Norwegian
	The owner of the Green house drinks Coffee
	The Green house is on the right of the White house
	The Sculptor breeds Snails
-	The Diplomat lives in the Yellow house
~ .	The owner of the middle house drinks Milk -> Dy = Milk
	The Norwegian lives next door to the Blue house
	The Violinist drinks Fruit juice → J ₃ ≠ Violinist +
	The Fox is in the house next to the Doctor's
••••	The Horse is next to the Diplomat's

Tack Scheduline
I ush Scheduling
Four tasks I_1 , I_2 , I_3 , and I_4 are related by time constraints:
\cdot T ₁ must be done during T ₃
 T₂ must be achieved before T₁ starts
• T. must overlap with T
T must start after T is complete
Are the constraints compatible?
What are the possible time relations between two tasks?
What if the tasks use resources in limited supply?
How to formulate this problem as a CSP2

F	inite vs.	Infinit	te CSP
Finite	CSP: each	variable l	nas a finite
Infinit	te CSP: sor	ne or all v	variables have
an infi Fa lin	nite domai ear program	n mina probl	ems over the
reals	oar program		
for i =	1, 2,, p : c	$\mathbf{x}_{i,1} \mathbf{x}_1 + \mathbf{a}_{i,2} \mathbf{x}_2 + \dots$	$+a_{i,n}x_n = a_{i,0}$
tor j =	-1, 2,, q i l	∋ _{jj1} × ₁ +b _{j,2} × ₂ +	+b _{j,n} x _n ≤ b _{j,0}
Wewil	Il only cons	Hder tinit	e (57

			7	1.1		1	1 . 1
COD	2 6	200	nak	Đ			
COF US	u c	<i>yeu</i>	I.CI	I F		Ule	
n variables X1,,	X _n					++	+++
Valid assignment:	٢ł	úa ← Va		Xak	v}	C)≤ k ≤
such that the val	ues v _i	,, V _{ik}	sati	sfy a	all co	onst	raints
relating the varia	bles >	Χ	Xir				+++
Complete assignm	nent: o	one w	here	k =	n		
fif all variable do	mains	have	size	d, †	here	are	2 O(d
complete assignm	ents]					ht	
States: valid assi	anmei	nts					
Initial state: emp	otv as:	sianm	ent {	}. i.e	. k =	0	+++
Successor of a st	tate						
							+ + +
$\{X_{i1} \in V_{i1}, \dots, X_{ik} \in V_{ik}\}$? {X _{i1} ←	V _{i1} ,,	X _{ik} ←V	ike 🔨ik	-1 4V i	k+1/	++
The state of the s	1 1 1)	()		1 F.	1.1.1

 A Key property of CSP: Commutativity The order in which variables are assigned values has no impact on the reachable complete valid assignments Hence: One can expand a node N by first selecting one variable X not in the assignment A associated with N and then assigning every value v in the domain of X ⇒ big reduction in branching factor] 			-					
Commutativity The order in which variables are assigned values has no impact on the reachable complete valid assignments Hence: 1) One can expand a node N by first selecting one variable X not in the assignment A associated with N and then assigning every value v in the domain of X [→ big reduction in branching factor]		A Key	pro	pert	y of	CS	? :	
The order in which variables are assigned values has no impact on the reachable complete valid assignments Hence: 1) One can expand a node N by first selecting one variable X not in the assignment A associated with N and then assigning every value v in the domain of X [→ big reduction in branching factor]	╶┿╍┾╍┝╍╆╍┝╸		omn	Nutat	·		+	
 The order in which variables are assigned values has no impact on the reachable complete valid assignments Hence: One can expand a node N by first selecting one variable X not in the assignment A associated with N and then assigning every value v in the domain of X big reduction in branching factor 				14141				
 has no impact on the reachable complete valid assignments Hence: 1) One can expand a node N by first selecting one variable X not in the assignment A associated with N and then assigning every value v in the domain of X [→ big reduction in branching factor] 	The orde	r in whi	ch var	iables	are	assigr	ned va	ues
assignments Hence: 1) One can expand a node N by first selecting one variable X not in the assignment A associated with N and then assigning every value v in the domain of X [→ big reduction in branching factor]	has no im	pact on	the r	eacha	ble co	mple	te vali	d
Hence: 1) One can expand a node N by first selecting one variable X not in the assignment A associated with N and then assigning every value v in the domain of X [→ big reduction in branching factor]	assignme	nts						
Hence: 1) One can expand a node N by first selecting one variable X not in the assignment A associated with N and then assigning every value v in the domain of X [→ big reduction in branching factor]								
 One can expand a node N by first selecting one variable X not in the assignment A associated with N and then assigning every value v in the domain of X [→ big reduction in branching factor] 	Hence:				+-+-+-	<u> </u>	+-+	
one variable X not in the assignment A associated with N and then assigning every value v in the domain of X [→ big reduction in branching factor]	1) One co		dan		hy fi		loctin	
one variable X not in the assignment A associated with N and then assigning every value v in the domain of X [→ big reduction in branching factor]	I) One co	in expu			DYII	131 36	ciec i in	g
associated with N and then assigning every value v in the domain of X [→ big reduction in branching factor]	one va	riable x	NOT I	n The	assigi	iment	· A	
value v in the domain of X [→ big reduction in branching factor]	associ	ated wit	th N a	ind the	en ass	signin	g ever	у —
[→ big reduction in branching factor]	value v	in the	domai	n of X	(
	[→ big i	reduction	n in bro	anching	facto	n1		
							1 ± 1	
							1.1	

		1 1 1			
	+ $+$ $+$ $+$				
4 varial	oles X ₁ , .	., X ₄			
Let the	valid as	signm	ent of	N be:	
A :	$= \{X_1 \in V_1\}$, X3 ↔	V ₃ }		
 For exc 	ample pic	k vari	able X	4	
Let the	domain	of X₄	be {v4	1, V42, V4	
The suc	cessors	ofA	are all	the valid	
assignm	nents am	ong:			
{	$X_1 \in V_1, X$	3 ← V3	, X₄ ∈ \	(41)	┝╍┿╍╍┿╍┾╍┝╍┿
	$X_1 \in V_1, X$	3 ← V3	, X ₄	(_{4,2} }	
	$X_1 \in V_1, X$	3 ← V3	, X ₄	(4,2}	
	+				$\frac{1}{2} - \frac{1}{2} - \frac{1}$

						1	-	******		0.000			
AK	>	nro	ne	pt.	10	f	C	SP		1			
	-7	P' `	pe		7 0		~			4		_	
	Co	omi	nut	tat	ivi:	ty							
						-							
The order in w	hic	h vo	iriat	ples	are	3 a	SS	ign	ed	val	ue	S	
has no impact	on t	he	read	chal	ble	co	mp	let	ev	ali	d		
assignments	++				+	+			$\left + \right $		$\left \cdot \right $		+
						$\left \right $			++		++		+
Hence:					†	1		-	\uparrow	÷÷			+
						1.1		-	$\uparrow\uparrow$	1	$\uparrow \uparrow$		1
 One can exp 	panc	1 a l	node	2 N	by	†ir	st	se	lec	tin	9		
one variable	2 X I	not	in t	he	assi	gn	me	nt	Α	1			
associated	Mitk	1 NI	and	the	na	60	ion	inc	-01	ion	-		Ļ
			and		-ii u	55	.9		1 91		(
value v in th	ie a	ome	ain c	TX				-	ļ				+-
[→ big reduct	tion	in br	ranch	hing	fac:	tor]			- <u>+</u>			
2) One need a	+	tor	0 + 10	0 5	a+h	+-		no.	10				+
c) One need h	15	TOP	e in	e p	um	10	α	100	JE		++		+
→ Backtrac	kind	7 se	arc	h al	gor	ith	m		\vdash	÷÷	+		+
	-				<u></u>			_				_	-

	-Da	CKT	rac	KIN	g	AIG	jor	ITA	Th
CSP	-ВАС	KTR	ACKI	NG	(A)				
1.	Ifa	ssigr	ment	Ais	com	plet	e the	n ret	urn A
2	X ←	sele	ct a v	ariat	ole n	ot ir	A		
3	D€	sele	ct an	orde	ring	on 1	the d	omaii	1 of X
4	For	each	value	v in	Ddo	2			
	a.	Add	(X←v) 1	o A					
	b	If A	is valid	then CSP	RACK	TDA	KTNG	A	
		й.	If resul	t≠fa	ilure t	then r	return	result	+++
	C.	Rem	ove (X←	v) fro	mA	1-1-			
5	Reti	urn f	ailure						
Call	CSP-	BAC	KIRA	ICK.	LNG	$({})$			

