Blind (Uninformed) Search
(Where we systematically explore alternatives)

R&N: Chap. 3, Sect. 3.3-5

Slides from Jean-Claude Latombe at Stanford University
(used with permission)

Simple Problem-Solving-Agent
Agent Algorithm

1. \(s_0 \leftarrow \text{sense/read initial state} \)
2. \(\text{GOAL?} \leftarrow \text{select/read goal test} \)
3. \(\text{Succ} \leftarrow \text{read successor function} \)
4. \(\text{solution} \leftarrow \text{search}(s_0, \text{GOAL?}, \text{Succ}) \)
5. \(\text{perform(solution)} \)

Search Tree

Note that some states may be visited multiple times
If states are allowed to be revisited, the search tree may be infinite even when the state space is finite.

Depth of a node N = length of path from root to N
 (depth of the root = 0)
Node expansion

The expansion of a node \(N \) of the search tree consists of:

1) Evaluating the successor function on \(\text{STATE}(N) \)
2) Generating a child of \(N \) for each state returned by the function

\[\text{node generation} \neq \text{node expansion} \]

Fringe of Search Tree

- The fringe is the set of all search nodes that haven't been expanded yet

Is it identical to the set of leaves?
Search Strategy

- The fringe is the set of all search nodes that haven't been expanded yet.
- The fringe is implemented as a priority queue FRINGE.
 - INSERT(node,FRINGE)
 - REMOVE(FRINGE)
- The ordering of the nodes in FRINGE defines the search strategy.

Search Algorithm #1

SEARCH#1
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,FRINGE)
3. Repeat:
 a. If empty(FRINGE) then return failure
 b. N ← REMOVE(FRINGE)
 c. s ← STATE(N)
 d. For every state s' in SUCCESSORS(s)
 i. Create a new node N' as a child of N
 ii. If GOAL?(s') then return path or goal state
 iii. INSERT(N',FRINGE)

Performance Measures

- Completeness
 A search algorithm is complete if it finds a solution whenever one exists.
- Optimality
 A search algorithm is optimal if it returns a minimum-cost path whenever a solution exists.
- Complexity
 It measures the time and amount of memory required by the algorithm.
Blind vs. Heuristic Strategies

- **Blind (or un-informed) strategies** do not exploit state descriptions to order FRINGE. They only exploit the positions of the nodes in the search tree.

- **Heuristic (or informed) strategies** exploit state descriptions to order FRINGE (the most "promising" nodes are placed at the beginning of FRINGE).

Example

For a blind strategy, N_1 and N_2 are just two nodes (at some position in the search tree).

- N_1 is a node with state 1 2 3 4 5 6 7 8.
- N_2 is a node with state 1 2 3 4 5 6 7 8.

Goal State

N_2 is more promising than N_1.

Example

For a heuristic strategy counting the number of misplaced tiles, N_2 is more promising than N_1.

- N_1 is a node with state 1 2 3 4 5 6 7 8.
- N_2 is a node with state 1 2 3 4 5 6 7 8.

Goal State

N_2 is more promising than N_1.
Remark

Some search problems, such as the \((n^2-1)\)-puzzle, are NP-hard.

One can't expect to solve all instances of such problems in less than exponential time (in \(n\)).

One may still strive to solve each instance as efficiently as possible.

This is the purpose of the search strategy.

\[\text{Arc cost } = 1 \]

\[\text{Uniform-Cost} \quad (\text{variant of breadth-first}) \quad \text{Arc cost } \geq \epsilon > 0 \]

Breadth-First Strategy

New nodes are inserted at the end of FRINGE.
Breadth-First Strategy

New nodes are inserted at the end of FRINGE

FRINGE = (2, 3)

FRINGE = (3, 4, 5)

FRINGE = (4, 5, 6, 7)
Important Parameters

1. Maximum number of successors of any state
 - **branching factor** b of the search tree

2. Minimal length (\times cost) of a path between
 the initial and a goal state
 - **depth** d of the shallowest goal node in the
 search tree

Evaluation

- b: branching factor
- d: depth of shallowest goal node

Breadth-first search is:
- Complete? Not complete?
- Optimal? Not optimal?

- Number of nodes generated: ???
Evaluation

- \(b \): branching factor
- \(d \): depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is 1
 - Number of nodes generated:
 \[1 + b + b^2 + \ldots + b^d = ??? \]

\[\Rightarrow \] Time and space complexity is \(O(b^d) \).

Big O Notation

\(g(n) = O(f(n)) \) if there exist two positive constants \(a \) and \(N \) such that:

for all \(n > N \), \(g(n) \leq a \times f(n) \).
Time and Memory Requirements

<table>
<thead>
<tr>
<th>d</th>
<th>Nodes</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>111</td>
<td>0.01 sec</td>
<td>11 Kbytes</td>
</tr>
<tr>
<td>4</td>
<td>1,111</td>
<td>1 sec</td>
<td>1 Mbyte</td>
</tr>
<tr>
<td>6</td>
<td>$\sim 10^6$</td>
<td>1 sec</td>
<td>100 Mb</td>
</tr>
<tr>
<td>8</td>
<td>$\sim 10^8$</td>
<td>100 sec</td>
<td>10 Gbytes</td>
</tr>
<tr>
<td>10</td>
<td>$\sim 10^{10}$</td>
<td>2.8 hours</td>
<td>1 Tbyte</td>
</tr>
<tr>
<td>12</td>
<td>$\sim 10^{12}$</td>
<td>11.6 days</td>
<td>100 Tbytes</td>
</tr>
<tr>
<td>14</td>
<td>$\sim 10^{14}$</td>
<td>3.2 years</td>
<td>10,000 Tbytes</td>
</tr>
</tbody>
</table>

Assumptions: $b = 10$; 1,000,000 nodes/sec; 100 bytes/node

Remark

If a problem has no solution, breadth-first may run for ever (if the state space is infinite or states can be revisited arbitrary many times).
Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Time and space complexity is $O(b^{d/2}) = O(b^2)$ if both trees have the same branching factor b.

Depth-First Strategy

New nodes are inserted at the front of FRINGE

FRINGE = (1)

Depth-First Strategy

New nodes are inserted at the front of FRINGE

FRINGE = (2, 3)
Depth-First Strategy
New nodes are inserted at the front of FRINGE

FRINGE = (4, 5, 3)
Depth-First Strategy

New nodes are inserted at the front of FRINGE

1
2
3
4
5

Depth-First Strategy

New nodes are inserted at the front of FRINGE

1
2
3
4
5

Depth-First Strategy

New nodes are inserted at the front of FRINGE

1
2
3
4
5
Depth-First Strategy

New nodes are inserted at the front of FRINGE
Evaluation

- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node

Depth-first search is:
- Complete?
- Optimal?

Depth-first search is:
- Complete only for finite search tree
- Not optimal

Number of nodes generated (worst case):
$$1 + b + b^2 + \ldots + b^m = O(b^m)$$

- Time complexity is $O(b^m)$
- Space complexity is $O(bm)$ (or $O(m)$)

[Reminder: Breadth-first requires $O(bd)$ time and space]

Depth-Limited Search

- Depth-first with depth cutoff k (depth at which nodes are not expanded)

Three possible outcomes:
- Solution
- Failure (no solution)
- Cutoff (no solution within cutoff)
Iterative Deepening Search

Provides the best of both breadth-first and depth-first search.

IDS
For $k = 0, 1, 2, \ldots$ do:
- Perform depth-first search with depth cutoff k
 (i.e., only generate nodes with depth $\leq k$)

Iterative Deepening

Iterative Deepening
Iterative Deepening

Performance

- Iterative deepening search is:
 - Complete
 - Optimal if step cost = 1
- Time complexity is:
 \[(d+1)(1) + db + (d-1)b^2 + ... + 1b^d = O(b^d)\]
- Space complexity is: \(O(bd)\) or \(O(d)\)

Calculation

\[\sum_{i=1}^{\infty} ib^{i-1} = b(b/(b-1))^2\]
Number of Generated Nodes (Breadth-First & Iterative Deepening)

- **Breadth-First (BF)** and **Iterative Deepening (ID)**
- **d = 5** and **b = 2**

<table>
<thead>
<tr>
<th></th>
<th>BF</th>
<th>ID</th>
<th>120/63 ≈ 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4 16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8 32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>32 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>120</td>
<td>120/63 ≈ 2</td>
<td></td>
</tr>
</tbody>
</table>

- **d = 5** and **b = 10**

<table>
<thead>
<tr>
<th></th>
<th>BF</th>
<th>ID</th>
<th>123,456/111,111 ≈ 1.111</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>400</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>3,000</td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>20,000</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td>1,111</td>
<td>123,456</td>
<td>123,456/111,111 ≈ 1.111</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Strategies

- **Breadth-first is complete and optimal, but has high space complexity**
- **Depth-first is space efficient, but is neither complete, nor optimal**
- **Iterative deepening is complete and optimal, with the same space complexity as depth-first and almost the same time complexity as breadth-first**
Avoiding Revisited States

- Requires comparing state descriptions
- Breadth-first search:
 - Store all states associated with generated nodes in VISITED
 - If the state of a new node is in VISITED, then discard the node

Implemented as hash-table or as explicit data structure with flags
Avoiding Revisited States

- Depth-first search:
 Solution 1:
 - Store all states associated with nodes in current path in VISITED
 - If the state of a new node is in VISITED, then discard the node
 \[\Rightarrow \text{Only avoids loops}\]

Solution 2:
- Store all generated states in VISITED
- If the state of a new node is in VISITED, then discard the node
 \[\Rightarrow \text{Same space complexity as breadth-first}\]

Uniform-Cost Search

- Each arc has some cost \(c \geq 0 \)
- The cost of the path to each node \(N \) is
 \[g(N) = \sum \text{costs of arcs} \]
- The goal is to generate a solution path of minimal cost
- The nodes \(N \) in the queue FRINGE are sorted in increasing \(g(N) \)

\[\Rightarrow \text{Need to modify search algorithm} \]
Search Algorithm #2

1. **INSERT(initial-node,FRINGE)**
2. **Repeat:**
 a. If empty(FRINGE) then return failure
 b. \(N \leftarrow \text{REMOVE}(\text{FRINGE}) \)
 c. \(s \leftarrow \text{STATE}(N) \)
 d. If GOAL?(s) then return path or goal state
 e. For every state \(s' \) in SUCCESSORS(s)
 i. Create a node \(N' \) as a successor of \(N \)
 ii. **INSERT(N',FRINGE)**

Avoiding Revisited States in Uniform-Cost Search

- For any state \(S \), when the first node \(N \) such that \(\text{STATE}(N) = S \) is expanded, the path to \(N \) is the best path from the initial state to \(S \)

- So:
 - When a node is expanded, store its state into CLOSED
 - When a new node \(N \) is generated:
 - If \(\text{STATE}(N) \) is in CLOSED, discard \(N \)
 - If there exits a node \(N' \) in the fringe such that \(\text{STATE}(N') = \text{STATE}(N) \), discard the node -- \(N \) or \(N' \) with the highest-cost path