
Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson1

Introduction: What is planning?

Deciding what to, how and when
• We want to achieve something

• We have things we can do
• We know when we can do each thing

• We know what happens when we do things
• We know what we cannot or are not allowed to do
• We know where we are now

• So, what do we do, when and how to achieve what we want?

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson2

Example: Decide what a rover does

What can a rover do?
• Drive, turn, stop, etc.

• Operate sensors (cameras, etc.)
• Operate arm

• Operate internal systems (storage, etc.)
• Communicate with Earth and orbiters

What limits rover operations?
• Rules of the worls – cannot be in two places at once
• Rules about operations – no moving arm while driving

• Temporal limits – moving takes time
• Resource limits – have only limited energy budget
• etc.

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson3

But, isn’t this easy?

We humans do it all the time, right?
• Yes, but not always well or correctly – and certainly not optimally

•  Example:

• Also, we are not very good at large problems
•  Example:

Not as easy as it looks!
• Humans often end up needing help with planning

• Machines often have hard time with planning

But, lots of fun!

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Planning for rover operations

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Rover planning on board

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson6

Planning

Ubiquitous in Artificial Intelligence
• Basic idea in rational agent is ability to achieve goals

• To achieve goals you invariably have to plan

Planning is in fact a search problem
• Given: Current state, possible actions and goals
• Actions: Map one state to another, if applicable
• Result: Sequence of actions to achieve goal

• Method: Search for a path, using actions as steps, to get from current
state to goal

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Planning and Search

Planning sounds familiar, right?
• Sliding tiles (8 puzzle) is a planning problem

Planning is key to AI
• Rational agents, seeking to achieve goals, have to plan

• Rational agents must work in many different areas

Special purpose search not reusable
• Search for 8-puzzle solutions not good for controlling rover

General planning
• Methods to solve arbitrary planning problems

• Often built on general search methods, but there is more to it

• Look at representation, reasoning and search for planning

7

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Planning: Plan

Logical representation
• Situation calculus

STRIPS representation
• States and Actions

• Examples

Simple search methods
• Forward search

• Backward search

• Heuristic search

8

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Planning: Outline of lectures

Logical representation
• Situation calculus

STRIPS representation
• States and Actions

• Examples

Simple search methods
• Forward search

• Backward search

• Heuristic search

9

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Planning: Outline (cont)

Partial Order Planning
• Search with grounded values

• Search with variables

• Heuristics

Planning with Graphs
• Planning graphs

• Heuristics

• “Graphplan” methods

10

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Planning

Planning in the “Real World”
• Time, Resources, Complex Relations, Constraints, etc.

• Hierarchical Task Network Planning

• Planning in a non-deterministic world

• Plan execution and re-planning

Decisions in an uncertain world
• Basic notions in probability

• Basic axioms and Bays rule

• Probabilistic methods for decision-making

11

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Situation Calculus

Basic Idea: Use logic and theorem proving
• Describe each situation with a set of logical sentences

• Describe actions and effects with logical axioms

Planning
• “Prove” the goal as a new sentence

• Or, “ask” whether goal can be proven from given sentences

12

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Logical representation

Time in planning
• Would assume time is key element in planning

• but, many planners use “steps” not actual time

• We will use steps for now - okay as long as actions are sequential

Situations (steps)
• Use basic sentences from predicate logic

• Situation typically defined by a set of propositions that are true:
•  isLinked(mac,epson)
•  isLinked(mac,laserjet)
•  canPrint(mac,laserjet)
•  isBroken(epson)

• Assume propositions not in set are false (closed-world assumption)

13

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Situations changing over “time”

Situations change between steps
• Need to connect step and situations

Want to describe different situations
• Could say: afterStep(s) = { isLinked(mac,epson), isLinked

(mac,laserjet),...}

• Problem: Does not fit predicate logic

So, we describe a relation between s and literal:
• holds(isLinked(mac,epson),s)

• holds(isLinked(mac,laserjet,s)

• ...
14

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Describing actions

Basic idea is to describe what changes
• Assume s is situation and a is an action

• Use result(a,s) to describe result of applying a in s

• Example: s’ = result(printFile(mac,epson,foo), s0)

Example description:
• If printer is connected and not broken, and print command is given for

a file, then the result is that file has been printed

holds(isLinked(mac,epson),s) ∧ ¬holds(isBroken(epson),s)"
→ holds(havePrintout(foo), result(printFile(mac,epson,foo), s))

15

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson16

Lýsing einstakra vandamála

Upphafsstaða
• Staðan í upphafi áætlunar
• Gerum ráð fyrir að stöðu sé lýst til fullnustu
•  T.d. með forsendu um lokaðan heim (closed world assumption)

Lýsing á markmiði
• Skilyrði sem lýsa markmiði áætlunar
• Yfirleitt er stöðu ekki lýst til fullnustu
•  Margar stöður fullnægja skilyrðinu

Dæmi:
• Upphafsstaða:
•  holds(linked(mac,epson),s0), holds(hasFile(mac,foo), s0),...

• Markmiðsskilyrði:
•  holds(havePrintout(foo),sfinal)

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Example

Actions
• ¬holds(have(fork),s) → holds(have(fork), result grab(fork), s))

• ¬holds(have(knife),s) → holds(have(knife), result grab(knife), s))

Initial state
• ¬holds(have(fork),s0) ∧ ¬holds(have(knife),s0)

Goal
• holds(have(fork),s) ∧holds(have(knife),s)

Can now solve with any logical theorem prover

Or, can we?

17

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson18

Small Problem

Describing an action:
• holds(isLinked(mac,epson),s) ∧ ¬holds(isBroken(epson),s)"
→ holds(havePrintout(foo), result printFile(mac,epson,foo), s)

The Frame Problem:
• How do we know that the printer does not get disconnected?

• Would rather not have to add every possible thing, such as:"
holds(isLinked(mac,epson), result printFile(mac,epson,foo), s)

• How do we know this does not turn on the projector?
•  Definitely don’t want to have to add:"

holds(isLinked(mac,epson),s) ∧ ¬holds(isBroken(epson),s)"
 ∧ ¬holds(isOn(projector),s) "
→ holds(havePrintout(foo), result printFile(mac,epson,foo), s)"
 ∧ ¬holds(isOn(projector), result printFile(mac,epson,foo), s)

Related problems are: Qualification and Ramification Prob’s

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Classical planning (STRIPS)

Simpler method
• Instead of general logic, use special “planning” representation

• Build on logic ideas – use propositional literals

• Define directly mapping of state and action to new state

• Solves the frame problem

Simplification also adds limits
• Less representational power

•  Cannot use complex logical relations
•  Cannot have conditional effects
•  Cannot extend to handle time, arithmetic, continuous resources,
•  Cannot do a lot of things

• But, sufficient to handle simple planning problems

19

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

STRIPS Actions

Each action has two parts:
• Condition on applicability (Preconditions)

• Description of result when it is applied (Effects)

Preconditions:
• Set of literals that must hold in current state

• print(file,mac,epson) has preconditions:
•  hasFile(mac,file)
•  linked(mac,epson)
•  -broken(epson)
•  hasPaper(epson)

• Common usage:
•  print(file,mac,epson):

•  pre: hasFile(mac,file), linked(mac,epson), -broken(epson), ...

20

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

STRIPS actions

Effects:
• Sets of positive and negated literals

• Positive ones are “Add effects”

• Negated ones are “Delete effects”

• Example: printFile(file,mac,epson) has the effects:
•  havePrintout(file)
•  -hasPaper(epson)

•  Silly printer can only fit one page at a time

• Common representation for effects
•  printFile(file,mac,epson):

•  add: havePrintout(file)
•  del: hasPaper(epson)

21

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Example: Blocks World

The BlocksWorld problem
• Have blocks, e.g., A,B,C,D,…

• Have a table (infinite and without specific locations)

• Can move a block from atop a block to another

• Can move a block from table to atop of another block

• Can move block from atop of a block on to table

State descriptions:
• loc(x,y): Block x is on top of y (or on table if y is “table”)

• clear(x): No block is on top of x

22

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson23

Example: Blocks World

Action: move(x,y,z)
• pre: clear(x), loc(x,y), clear(z)
• add: loc(x,z), clear(y)
• del: loc(x,y), clear(z)

Action: move-to-table(x,y)
• pre: clear(x), loc(x,y)
• add: loc(x,table), clear(y)
• del: loc(x,y)

Action: move-from-table(x,y)
• pre: clear(x), loc(x,y)
• add: loc(x,table), clear(y)
• del: loc(x,y)

Photo: Univ. Hamburg

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson24

Classical state space planning

Initial state
• The state at the beginning

• Described as a set of positive literals
•  Assume other propositions are false

Goal condition
• Condition that defines the goal

• Set of literals (positive or negative)
•  Other propositions can be either true or false

Example:
• Initial state:

•  linked(mac,epson), hasFile(mac,foo), hasFile(mac,file),...

• Goal condition:
•  havePrintout(foo)

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

STRIPS properties

Solves the frame problem
• Literals that do not appear in effects are unchanged

Does not solve the ramification problem
• Hard to describe effects of complex actions

• Example: Airplane full of people flies to London – the action needs to
describe effect on each person

Does not solve the qualification problem
• Difficult to exhaustively list all conditions

• Example: Car will start only if there is no potato in the tailpipe

Still, permits state space search for planning

25

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson26

Objects
• Packages

• Airplanes

• Airports

Actions
• Load a package into airplane

• Fly airplane from one airport to another

• Unload package from airplane

Example: Transport problem

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Forward state space search

Basic idea:
• Search starts from initial state

• Applicable actions determine possible next states

• Next states defined by states and action effects

• Use any favorite search technique to find a goal state

Breadth-First Search:
• L is the initial state and an empty path

• Repeat:
•  If L is empty, we are done and no solution can be found
•  Pick first state s from list L
•  If s satisfies goal condition, retun s with path to s
•  Find all applicable actions in s and for each action a, add the result of applying a to

s to end of L (with path to s + a)

27

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson28

Example: Blind search in Blocks World

Initial state:
• loc(A,table)
• loc(B,C)
• loc(C,table)
• clear(A)
• clear(B)

Goal:
• loc(B,A)
• loc(A,C)

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Blind forward state space search in planning

Unfocussed and often impractical method
• All possible actions examined

•  Even those having nothing to do with initial state or goal

• Search space is very large

However, heuristic version is getting better
• With recent advances in heuristics has forward search"

become a reasonable technique

29

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Regression planning (“Backwards search”)

Basic Idea:
• Start with the goal condition

• Select an action that achieves some element in goal condition

• Find a state that permits action and gives goal condition

• Apply recursively to the state found

• Use search method of choice

Finding regression state of given state S:
• Select a literal in S, say it is L (and L is either p or –p)

• Find action A that achieves L
•  has p in add effects if L=p
•  has p in del effects if L= -p

• Regressed state is (s \ L ∪ pre(A))

30

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson31

Example:

Initial state:
• loc(A,table)
• loc(B,C)
• loc(C,table)
• clear(A)
• clear(B)

Goal condition:
• loc(B,A)
• loc(A,C)

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

About regression planning

More focused than forward search
• Only examines actions that in some way relate to the goal

Blind regression is impractical
• Blind search is invariably exponential in length of plan

Heuristics more complex than for forward search
• But, some promising techniques based on heuristic regression

32

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Heuristic state space search

Blind search does not work in planning
• Branching factor is way too large

• Without heuristics, even small planning problems are unsolvable

Basic ideas for heuristics in state space search for planning
• Simplify preconditions – ignore some of them

• Simplify effects – ignore some of them

33

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson34

Extreme version: Ignore all preconditions
• Assume every action can be applied in any state

• Find a plan from given state to a goal state
•  Easier problem to solve, but additions and effects still make it nontrivial

• Length of plan is heuristic evaluation of s

Variations
• Assume effects of actions are independent

•  Length of plan then becomes number of literals in goal different from s

• Assume actions of have no delete effects
•  Finding plan then becomes very easy

Heuristics from ignoring preconditions

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Heuristics from ignoring effects

Basic idea
• Assume actions have no delete effects

• Solve the simplified planning problem from state s to goal state

• Length of plan is heuristic evaluation of state s

Implementation
• Solving a planning problem to get heuristics

• But, problem is much simpler and easier to solve

35

Háskólinn í Reykjavík - Gervigreind Ari K. Jónsson

Separating subgoals

Basic idea
• Find a plan for each literal in goal condition

• Combine the plans to generate a complete plan

Problem!
• Initial state: loc(B,table), loc(A,table), loc(C,A), clear(B), clear(C)

• Goal: loc(A,B), loc(B,C)

• Called the Sussman anamoly

36

