Introduction:What is planning?

Deciding what to, how and when
® We want to achieve something

We have things we can do

We know when we can do each thing

We know what happens when we do things

We know what we cannot or are not allowed to do

We know where we are now

So, what do we do, when and how to achieve what we want!

e
Haskolinn i Reykjavik - Gervigreind I Ari K. ]énsson



Example: Decide what a rover does

What can a rover do!
® Dirive, turn, stop, etc.
® Operate sensors (cameras, etc.)
® Operate arm
® Operate internal systems (storage, etc.)
® Communicate with Earth and orbiters

What limits rover operations?

Rules of the worls — cannot be in two places at once
Rules about operations — no moving arm while driving
Temporal limits — moving takes time

Resource limits — have only limited energy budget

etc.

Haskolinn i Reykjavik - Gervigreind 2 Ari K. ]énsson



But, isn’t this easy?

We humans do it all the time, right?

® Yes, but not always well or correctly — and certainly not optimally

® Example:

® Also, we are not very good at large problems

® Example:

Not as easy as it looks!
® Humans often end up needing help with planning

® Machines often have hard time with planning

But, lots of fun!

e
Haskolinn i Reykjavik - Gervigreind 3 Ari K. ]énsson



Planning for rover operations

Haskolinn i Reykjavik - Gervigreind Ari K. ]énsson



Rover planning on board

Haskolinn i Reykjavik - Gervigreind Ari K. ]énsson



Planning

Ubiquitous in Artificial Intelligence
® Basic idea in rational agent is ability to achieve goals

® To achieve goals you invariably have to plan

Planning is in fact a search problem

® Given: Current state, possible actions and goals

® Actions: Map one state to another, if applicable

® Result: Sequence of actions to achieve goal

® Method: Search for a path, using actions as steps, to get from current
state to goal

e
Haskolinn i Reykjavik - Gervigreind 6 Ari K. ]énsson



Planning and Search

Planning sounds familiar, right?

® Sliding tiles (8 puzzle) is a planning problem

Planning is key to Al
® Rational agents, seeking to achieve goals, have to plan

® Rational agents must work in many different areas

Special purpose search not reusable

® Search for 8-puzzle solutions not good for controlling rover

General planning
® Methods to solve arbitrary planning problems
® Often built on general search methods, but there is more to it

® Look at representation, reasoning and search for planning

e
Haskolinn i Reykjavik - Gervigreind 7 Ari K. ]énsson



Planning: Plan

Logical representation

® Situation calculus

STRIPS representation
® States and Actions

® Examples

Simple search methods
® Forward search
® Backward search

® Heuristic search

e
Haskolinn i Reykjavik - Gervigreind 8 Ari K. ]énsson



Planning: Outline of lectures

Logical representation

® Situation calculus

STRIPS representation
® States and Actions

® Examples

Simple search methods
® Forward search
® Backward search

® Heuristic search

e
Haskolinn i Reykjavik - Gervigreind 9 Ari K. ]énsson



Planning: Outline (cont)

Partial Order Planning
® Search with grounded values
® Search with variables

® Heuristics

Planning with Graphs
® Planning graphs
® Heuristics

® “Graphplan” methods

e
Haskolinn i Reykjavik - Gervigreind 10 Ari K. ]énsson



Planning

Planning in the “Real World”

® Time, Resources, Complex Relations, Constraints, etc.

® Hierarchical Task Network Planning

® Planning in a non-deterministic world

® Plan execution and re-planning

Decisions in an uncertain world
® Basic notions in probability
® Basic axioms and Bays rule

® Probabilistic methods for decision-making

e
Haskolinn i Reykjavik - Gervigreind I Ari K. ]énsson



Situation Calculus

Basic Idea: Use logic and theorem proving
® Describe each situation with a set of logical sentences

® Describe actions and effects with logical axioms

Planning

® “Prove” the goal as a new sentence

® Or,“ask” whether goal can be proven from given sentences

e
Haskolinn i Reykjavik - Gervigreind 12 Ari K. ]énsson



Logical representation

Time in planning

® Would assume time is key element in planning

® but, many planners use “steps” not actual time

® We will use steps for now - okay as long as actions are sequential
Situations (steps)

® Use basic sentences from predicate logic

® Situation typically defined by a set of propositions that are true:

® isLinked(mac,epson)

isLinked(mac,laserjet)
canPrint(mac,laserjet)
isBroken(epson)

® Assume propositions not in set are false (closed-world assumption)

Haskolinn i Reykjavik - Gervigreind 13 Ari K. ]énsson



Situations changing over “‘time”

Situations change between steps

® Need to connect step and situations

Want to describe different situations

® Could say: afterStep(s) = { isLinked(mac,epson), isLinked
(mac,laserjet),...}

® Problem: Does not fit predicate logic
So, we describe a relation between s and literal:
® holds(isLinked(mac,epson),s)

® holds(isLinked(mac,laserjet,s)
[

e
Haskolinn i Reykjavik - Gervigreind |4 Ari K. ]énsson



Describing actions

Basic idea is to describe what changes
® Assume s is situation and a is an action
® Use result(a,s) to describe result of applying a in s

® Example: s’ = result(printFile(mac,epson,foo), s0)

Example description:

® If printer is connected and not broken, and print command is given for
a file, then the result is that file has been printed

holds(isLinked(mac,epson),s) A —holds(isBroken(epson),s)
— holds(havePrintout(foo), result(printFile(mac,epson,foo), s))

e
Haskolinn i Reykjavik - Gervigreind I5 Ari K. ]énsson



Lysing einstakra vandamala

Upphafsstada
® Stadan i upphafi aetlunar
® Gerum rad fyrir ad stodu sé lyst til fullnustu
® T.d.med forsendu um lokadan heim (closed world assumption)
Lysing 2 markmioi
® Skilyr&i sem lysa markmi&i azetlunar
® Yfirleitt er stodu ekki lyst til fullnustu
® Margar stodur fullnzgja skilyrdinu
Dami:
® Upphafsstada:
® holds(linked(mac,epson),s;), holds(hasFile(mac,foo), sg),...

® Markmidsskilyrdi:

® holds(havePrintout(foo),sgna)
e

Haskolinn i Reykjavik - Gervigreind 16 Ari K. ]énsson



Example

Actions
® -holds(have(fork),s) — holds(have(fork), result grab(fork), s))
® Sholds(have(knife),s) — holds(have(knife), result grab(knife), s))
Initial state
® Sholds(have(fork),s0) A —holds(have(knife),s0)
Goal
® holds(have(fork),s) A holds(have(knife),s)

Can now solve with any logical theorem prover

Or, can we!

Haskolinn i Reykjavik - Gervigreind 17 Ari K. ]énsson



Small Problem

Describing an action:

® holds(isLinked(mac,epson),s) A —tholds(isBroken(epson),s)
— holds(havePrintout(foo), result printFile(mac,epson,foo), s)

The Frame Problem:

® How do we know that the printer does not get disconnected?

® Would rather not have to add every possible thing, such as:
holds(isLinked(mac,epson), result printFile(mac,epson,foo), s)

® How do we know this does not turn on the projector?

® Definitely don’t want to have to add:
holds(isLinked(mac,epson),s) A —tholds(isBroken(epson),s)
A —holds(isOn(projector),s)
— holds(havePrintout(foo), result printFile(mac,epson,foo), s)
A —holds(isOn(projector), result printFile(mac,epson,foo), s)

Related problems are: Qualification and Ramification Prob’s

Haskolinn i Reykjavik - Gervigreind 18 Ari K. ]énsson



Classical planning (STRIPS)

Simpler method

® Instead of general logic, use special “planning” representation

® Build on logic ideas — use propositional literals

® Define directly mapping of state and action to new state

® Solves the frame problem

Simplification also adds limits

® Less representational power

® Cannot use complex logical relations

® Cannot have conditional effects

® Cannot extend to handle time, arithmetic, continuous resources,
® Cannot do a lot of things

® But, sufficient to handle simple planning problems

e
Haskolinn i Reykjavik - Gervigreind 19 Ari K. ]énsson



STRIPS Actions

Each action has two parts:
® Condition on applicability (Preconditions)
® Description of result when it is applied (Effects)

Preconditions:

® Set of literals that must hold in current state

® print(file,mac,epson) has preconditions:

® hasFile(mac,file)

linked(mac,epson)
-broken(epson)
hasPaper(epson)

® Common usage:

® print(file,mac,epson):

® pre: hasFile(mac,file), linked(mac,epson), -broken(epson), ...

Haskolinn i Reykjavik - Gervigreind 20 Ari K. ]énsson



STRIPS actions

Effects:

® Sets of positive and negated literals

® Positive ones are “Add effects”

® Negated ones are “Delete effects”

Example: printFile(file,mac,epson) has the effects:

® havePrintout(file)
® _hasPaper(epson)
® Silly printer can only fit one page at a time

Common representation for effects

® printFile(file,mac,epson):

® add: havePrintout(file)
® del: hasPaper(epson)

Haskolinn i Reykjavik - Gervigreind 21 Ari K. ]énsson



Example: Blocks World

The BlocksWorld problem
® Have blocks, e.g.,A,B,C,D,...

® Have a table (infinite and without specific locations)

® Can move a block from atop a block to another

® Can move a block from table to atop of another block

® Can move block from atop of a block on to table

State descriptions:

® loc(x,y): Block x is on top of y (or on table if y is “table”)

® clear(x): No block is on top of x

e
Haskolinn i Reykjavik - Gervigreind 22 Ari K. ]énsson



Example: Blocks World

Action: move(Xx,y,z)

® pre: clear(x), loc(x,y), clear(z)
® add:loc(x,z), clear(y)

® del:loc(x,y), clear(z)
Action: move-to-table(x,y)
® pre:clear(x), loc(x,y)

® add: loc(x,table), clear(y)

® del:loc(x,y)

Action: move-from-table(x,y)
® pre:clear(x), loc(x,y)

® add: loc(x,table), clear(y)

Photo: Univ. Hamburg

® del:loc(x,y)
s
Haskolinn i Reykjavik - Gervigreind 23 Ari K. ]énsson



Classical state space planning

Initial state
® The state at the beginning

® Described as a set of positive literals

® Assume other propositions are false

Goal condition
® Condition that defines the goal
® Set of literals (positive or negative)

® Other propositions can be either true or false

Example:

® |nitial state:

® linked(mac,epson), hasFile(mac,foo), hasFile(mac,file),...

® Goal condition:

o bachiiouioo

Haskolinn i Reykjavik - Gervigreind 24 Ari K. ]énsson



STRIPS properties

Solves the frame problem

® Literals that do not appear in effects are unchanged

Does not solve the ramification problem
® Hard to describe effects of complex actions

® Example: Airplane full of people flies to London — the action needs to
describe effect on each person

Does not solve the qualification problem

® Difficult to exhaustively list all conditions

® Example: Car will start only if there is no potato in the tailpipe

Still, permits state space search for planning

e
Haskolinn i Reykjavik - Gervigreind 25 Ari K. ]énsson



Example: Transport problem

Obijects

® Packages
® Airplanes
® Airports
Actions
® Load a package into airplane
® Fly airplane from one airport to another

® Unload package from airplane

e
Haskolinn i Reykjavik - Gervigreind 26 Ari K. ]énsson



Forward state space search

Basic idea:

® Search starts from initial state

® Applicable actions determine possible next states

® Next states defined by states and action effects

® Use any favorite search technique to find a goal state

Breadth-First Search:

® Lis the initial state and an empty path
® Repeat:

® If L is empty, we are done and no solution can be found

Pick first state s from list L
If s satisfies goal condition, retun s with path to s

Find all applicable actions in s and for each action a, add the result of applying a to

s to end of L (with path to s + a)
e

Haskolinn i Reykjavik - Gervigreind 27 Ari K. ]énsson



Example: Blind search in Blocks World

Initial state:
® loc(Atable)
loc(B,C)
loc(C,table)
clear(A)
clear(B)

Goal:
® loc(B,A)
® loc(A,C)

s
Haskolinn i Reykjavik - Gervigreind 28 Ari K. ]énsson



Blind forward state space search in planning

Unfocussed and often impractical method

® All possible actions examined

® Even those having nothing to do with initial state or goal
® Search space is very large

However, heuristic version is getting better

® W/ith recent advances in heuristics has forward search
become a reasonable technique

e
Haskolinn i Reykjavik - Gervigreind 29 Ari K. ]énsson



Regression planning (“‘Backwards search”)

Basic Idea:
® Start with the goal condition

® Select an action that achieves some element in goal condition
® Find a state that permits action and gives goal condition

® Apply recursively to the state found

® Use search method of choice

Finding regression state of given state S:

® Select a literal in S,say itis L (and L is either p or —p)
® Find action A that achieves L

® has p in add effects if L=p
® has p in del effects if L= -p

® Regressed stateis (s \ L U pre(A))

Haskolinn i Reykjavik - Gervigreind 30 Ari K. ]énsson



Example:

Initial state:
® loc(Atable)
loc(B,C)
loc(C,table)
clear(A)
clear(B)

Goal condition:
® loc(B,A)
® oc(A,C)

s
Haskolinn i Reykjavik - Gervigreind 31 Ari K. ]énsson



About regression planning

More focused than forward search

® Only examines actions that in some way relate to the goal

Blind regression is impractical

® Blind search is invariably exponential in length of plan

Heuristics more complex than for forward search

® But, some promising techniques based on heuristic regression

e
Haskolinn i Reykjavik - Gervigreind 32 Ari K. ]énsson



Heuristic state space search

Blind search does not work in planning

® Branching factor is way too large

® Without heuristics, even small planning problems are unsolvable
Basic ideas for heuristics in state space search for planning

® Simplify preconditions — ignore some of them

® Simplify effects — ignore some of them

e
Haskolinn i Reykjavik - Gervigreind 33 Ari K. ]énsson



Heuristics from ignoring preconditions

Extreme version: Ignore all preconditions
® Assume every action can be applied in any state

® Find a plan from given state to a goal state

® Easier problem to solve, but additions and effects still make it nontrivial
® Length of plan is heuristic evaluation of s

Variations

® Assume effects of actions are independent

® Length of plan then becomes number of literals in goal different from s
® Assume actions of have no delete effects

® Finding plan then becomes very easy

e
Haskolinn i Reykjavik - Gervigreind 34 Ari K. ]énsson



Heuristics from ignoring effects

Basic idea
® Assume actions have no delete effects
® Solve the simplified planning problem from state s to goal state

® Length of plan is heuristic evaluation of state s

Implementation
® Solving a planning problem to get heuristics

® But, problem is much simpler and easier to solve

e
Haskolinn i Reykjavik - Gervigreind 35 Ari K. ]énsson



Separating subgoals

Basic idea
® Find a plan for each literal in goal condition
® Combine the plans to generate a complete plan
Problem!
® Initial state: loc(B,table), loc(A,table), loc(C,A), clear(B), clear(C)
® Goal: loc(A,B), loc(B,C)

® Called the Sussman anamoly

e
Haskolinn i Reykjavik - Gervigreind 36 Ari K. ]énsson



