

Outline

- Why FOL?
- □ Syntax and semantics of FOL
- Using FOL
- U Wumpus world in FOL
- □ Knowledge engineering in FOL

Propositional logic, pros and cons © Propositional logic is declarative

- © Propositional logic allows partial
 - (disjunctive/negated) information (unlike most data structures and databases)
- © Propositional logic is compositional:
- - meaning of B_{1,1} ~ P_{1,2} is derived from meaning of B_{1,1} and of P_{1,2}

Why not use Natural Language?

- It serves a different purpose:Communication
- rather than representation

 It is not compositional
 - Context matters
- □ It can be ambiguous
 - Again, context matters

Create a new language

□ Builds on propositinal logic

□ But is inspired by natural language!

First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, ...
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
 - Functions: father of, best friend, one more than, plus, ...

□ Constants KingJohn, 2, NUS,...□ Predicates Brother, >,...□ Functions Sqrt, LeftLegOf,...□ Variables x, y, a, b,...□ Connectives \neg , \Rightarrow , \land , \lor , \Leftrightarrow □ Equality =□ Quantifiers \forall , \exists

Atomic sentence =	predicate (term ₁ ,,term _n) or term ₁ = term ₂
Term =	<i>function</i> (<i>term</i> ₁ ,, <i>term</i> _n) or constant or variable
E.g., Brother(K	ingJohn,RichardTheLionheart)
>(Length(LeftLeg	gOf(Richard)),Length(LeftLegOf(KingJohn))

Complex sentences

□ Complex sentences are made from atomic sentences using connectives $\neg S_1, S_1 \land S_2, S_1 \lor S_2, S_1 \Rightarrow S_2, S_1 \Leftrightarrow S_2,$

E.g. Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) >(1,2) $\lor \le$ (1,2)

<(1,2) ^ ¬ >(1,2)

Truth in first-order logic Sentences are true with respect to a model and an interpretation (DIAGRAM) Model contains objects (domain elements) and relations among them Interpretation specifies referents for constant symbols → objects predicate symbols → relations function symbols → relations An atomic sentence predicate(term1,...,term2) is true iff the objects referred to by term1,...,term2) is true iff the objects referred to by predicate

U	Universal quantification		
	∀ <variables> <sentence></sentence></variables>		
	eryone in HR is smart: At(x,HR) \Rightarrow Smart(x)		
	$\forall x \ P$ is true in a model <i>m</i> iff <i>P</i> is true with <i>x</i> being each possible object in the model		
	Roughly speaking, equivalent to the conjunction of instantiations of P At(KingJohn,HR) \Rightarrow Smart(KingJohn) \land At(Kichard,HR) \Rightarrow Smart(Richard) \land At(HR,HR) \Rightarrow Smart(HR) \land		

Е

A common mistake to avoid

 $\hfill \Box$ Typically, \Rightarrow is the main connective with \forall $\hfill\square$ Common mistake: using \land as the main connective with \forall : $\forall x At(x, HR) \land Smart(x)$ means "Everyone is at HR and everyone is smart"

Existential quantification □ ∃<variables> <sentence> Someone at HR is smart: $\exists x \operatorname{At}(x, \operatorname{HR}) \land \operatorname{Smart}(x)$

- □ ∃*x P* is true in a model *m* iff *P* is true with *x* being some possible object in the model
- □ Roughly speaking, equivalent to the disjunction of instantiations of *P* At(KingJohn,HR) ∧ Smart(KingJohn) ∨ At(Richard,HR) ∧ Smart(Richard) ∨ At(HR,HR) ∧ Smart(HR)

v ...

The kinship domain:

- Brothers are siblings
- $\forall x, y \ Brother(x, y) \Leftrightarrow Sibling(x, y)$ \Box One's mother is one's female parent
- ∀m,c Mother(c) = m ⇔ (Female(m) ∧ Parent(m,c))
 "Sibling" is symmetric
 - $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$

Some sentences are **Axioms** (i.e. definitions, facts) while others are **Theorems** derived from those.

Interacting with FOL KBs Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t=5: Tell(KB,Percept([Smell,Breeze,None],S)) Ask(KB,3a BestAction(a,S)) I.e., does the KB entail some best action at t=5? Answer: Yes, {a/Shoot} ← substitution (binding list) Given a sentence S and a substitution q, S q denotes the result of plugging q into S; e.g., S = Smarter(X,y) g = Xmarter(Hillary,Bill) Ask(KB,S) returns some/all q such that KB + Sq

Summary

□ First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world