Propositional logic, pros and cons

- Propositional logic is declarative
- Propositional logic allows partial (disjunctive/negated) information
 - (unlike most data structures and databases)
- Propositional logic is compositional:
 - meaning of $B_{1,1} \land P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
Propositional logic, pros and cons

- Meaning in propositional logic is **context-independent**
 - (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power
 - (unlike natural language)
 - E.g., cannot say "pits cause breezes in adjacent squares"
 - except by writing one sentence for each square

Why not use Natural Language?

- It serves a different purpose:
 - Communication rather than representation
- It is not compositional
 - Context matters
- It can be ambiguous
 - Again, context matters

Create a new language

- Builds on propositional logic
- But is inspired by natural language!
First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, …
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, …
 - Functions: father of, best friend, one more than, plus, …

Syntax of FOL: Basic elements

- Constants: KingJohn, 2, NUS,…
- Predicates: Brother, >,…
- Functions: Sqrt, LeftLegOf,…
- Variables: x, y, a, b,…
- Connectives: ¬, ⇒, ∧, ∨, ⇔
- Equality: =
- Quantifiers: ∀, ∃

Atomic sentences

Atomic sentence = predicate (term₁,…,termₙ)
or term₁ = term₂

Term = function (term₁,…,termₙ)
or constant or variable

- E.g., Brother(KingJohn,RichardTheLionheart)

 > (Length(LeftLegOf(Richard)),Length(LeftLegOf(KingJohn)))
Complex sentences
- Complex sentences are made from atomic sentences using connectives
 \(-S, S_1 \land S_2, S_1 \lor S_2, S_1 \Rightarrow S_2, S_1 \Leftrightarrow S_2\)

 E.g. \(\text{Sibling(KingJohn,Richard)} \Rightarrow \text{Sibling(Richard,KingJohn)}\)
 >\((1,2) \lor \leq \leq (1,2)\)
 \(<(1,2) \land \neg \geq (1,2)\)

Truth in first-order logic
- Sentences are true with respect to a model and an interpretation.
- Model contains objects (domain elements) and relations among them.
- Interpretation specifies referents for:
 - Constant symbols \(\rightarrow\) objects
 - Predicate symbols \(\rightarrow\) relations
 - Function symbols \(\rightarrow\) functional relations

 An atomic sentence \(\text{predicate(\text{term}_1,\ldots,\text{term}_n)}\) is true iff the objects referred to by \(\text{term}_1,\ldots,\text{term}_n\) are in the relation referred to by \(\text{predicate}\).

Models for FOL: Example

![Diagram showing relationships between objects and relations in a model for first-order logic.]}
Universal quantification

- ∀<variables> <sentence>
- Everyone in HR is smart:
 ∀x At(x,HR) ⇒ Smart(x)
- ∀x P is true in a model m iff P is true with x being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P
 - At(KingJohn,HR) ⇒ Smart(KingJohn)
 - At(Richard,HR) ⇒ Smart(Richard)
 - At(HR,HR) ⇒ Smart(HR)
 - ...

A common mistake to avoid

- Typically, ⇒ is the main connective with ∀
- Common mistake: using ∧ as the main connective with ∀:
 ∀x At(x,HR) ∧ Smart(x)
 means “Everyone is at HR and everyone is smart”

Existential quantification

- ∃<variables> <sentence>
- Someone at HR is smart:
 ∃x At(x,HR) ∧ Smart(x)
- ∃x P is true in a model m iff P is true with x being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P
 - At(KingJohn,HR) ∧ Smart(KingJohn)
 - At(Richard,HR) ∧ Smart(Richard)
 - At(HR,HR) ∧ Smart(HR)
 - ...

Another mistake to avoid

- Typically, \(\land \) is the main connective with \(\exists \).
- Common mistake: using \(\Rightarrow \) as the main connective with \(\exists \):
 \[\exists x \, \text{At}(x, \text{HR}) \Rightarrow \text{Smart}(x) \]
 is true if there is anyone who is not at HR!

Properties of quantifiers

- \(\forall x \, \forall y \) is the same as \(\forall y \, \forall x \)
- \(\exists x \, \exists y \) is the same as \(\exists y \, \exists x \)
- \(\exists x \, \forall y \) is not the same as \(\forall y \, \exists x \)
- \(\exists x \text{ Loves}(x,y) \) "There is a person who loves everyone in the world"
- \(\forall y \text{ Loves}(x,y) \) "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
 \[\forall x \text{ Likes}(x,\text{IceCream}) \iff \exists x \, \neg \text{Likes}(x,\text{IceCream}) \]
 \[\exists x \text{ Likes}(x,\text{Broccoli}) \iff \forall x \, \neg \text{Likes}(x,\text{Broccoli}) \]

Equality

- \(\text{term}_1 = \text{term}_2 \) is true under a given interpretation if and only if \(\text{term}_1 \) and \(\text{term}_2 \) refer to the same object.
- E.g., definition of Sibling in terms of Parent:
 \[\forall x, y \, \text{Sibling}(x,y) \iff \]
 \[\neg (x = y) \land \exists m, f \, (m = f) \land \text{Parent}(m,x) \land \text{Parent}(f,x) \land \text{Parent}(m,y) \land \text{Parent}(f,y) \]
Using FOL

The kinship domain:

- Brothers are siblings
 \[\forall x,y \text{ Brother}(x,y) \iff \text{Sibling}(x,y) \]

- One's mother is one's female parent
 \[\forall m,c \text{ Mother}(c) = m \iff (\text{Female}(m) \land \text{Parent}(m,c)) \]

- "Sibling" is symmetric
 \[\forall x,y \text{ Sibling}(x,y) \iff \text{Sibling}(y,x) \]

Some sentences are Axioms (i.e. definitions, facts) while others are Theorems derived from those.

Interacting with FOL KBs

- Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at \(t=5 \):
 \[\text{Tell}(\text{KB}, \text{Percept}([\text{Smell}, \text{Breeze}, \text{None}], 5)) \]

- Ask (KB, \exists a \text{ BestAction}(a,5))

- I.e., does the KB entail some best action at \(t=5 \)?

- Answer: Yes, \(\{a/\text{Shoot}\} \) ← substitution (binding list)

- Given a sentence \(S \) and a substitution \(q \), \(S^q \) denotes the result of plugging \(q \) into \(S \); e.g.,
 \[S = \text{Smarter}(x,y) \]
 \[q = \{x/\text{Hillary}, y/\text{Bill}\} \]
 \[S^q = \text{Smarter}([\text{Hillary}, \text{Bill}]) \]

- \(\text{Ask}(\text{KB}, S) \) returns some/all \(q \) such that \(\text{KB} \models S^q \)

KB for the wumpus world

- Perception
 \[\forall t,s,b \text{ Percept}([s,b,\text{Glitter}],t) \iff \text{Glitter}(t) \]

- Reflex
 \[\forall t \text{ Glitter}(t) \implies \text{BestAction}(\text{Grab},t) \]
Deducing hidden properties

- \(\forall x,y,a,b \text{ Adjacent}([x,y],[a,b]) \Rightarrow [a,b] \in \{[x+1,y], [x-1,y], [x,y+1], [x,y-1]\} \)

Properties of squares:
- \(\forall s,t \text{ At(Agent,s,t) \& Breeze(t) } \Rightarrow \text{ Breezy(s) } \)

Squares are breezy near a pit:
- Diagnostic rule---infer cause from effect
 \(\forall s \text{ Breezy(s) } \Rightarrow \exists \text{ Adjacent(r,s) } \& \text{ Pit(r) } \)
- Causal rule---infer effect from cause
 \(\forall r \text{ Pit(r) } \Rightarrow [\forall s \text{ Adjacent(r,s) } \Rightarrow \text{ Breezy(s) }] \)

Summary

- First-order logic:
 - objects and relations are semantic primitives
 - syntax: constants, functions, predicates, equality, quantifiers

- Increased expressive power:
 sufficient to define wumpus world