Introduction to Visualization and Data Presentation

Jordi Bieger

Reykjavik University School of Computer Science Center for Analysis and Design of Intelligent Agents

jbieger@gmail.com

October 7, 2016

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ □▶ ▲ □▶

Overview

1 Intro

- 4 Effectiveness
 - Color
 - Scales
 - Graphical Integrity
 - Common mistakes

5 Efficiency

- Data-Ink
- Data Density
- Multifunctioning Graphical Elements

Research

Critical!

A critical part of research is *communicating* your findings to an *audience*.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Communication Methods

Text

- Math / Logic / Code
- Tables
- Graphs
- Diagrams
- Illustrations
- Animation
- ...

- Text
- Math / Logic / Code
- Tables
- Graphs
- Diagrams
- Illustrations
- Animation
- ...

- Text
- Math / Logic / Code
- Tables
- Graphs
- Diagrams
- Illustrations
- Animation
- ...

- Text
- Math / Logic / Code
- Tables
- Graphs
- Diagrams
- Illustrations
- Animation
- ...

- Text
- Math / Logic / Code
- Tables
- Graphs
- Diagrams
- Illustrations
- Animation
- ...

- Text
- Math / Logic / Code
- Tables
- Graphs
- Diagrams
- Illustrations
- Animation
- ...

Communication Methods

- Text
- Math / Logic / Code
- Tables
- Graphs
- Diagrams
- Illustrations
- Animation

• ...

- Text
- Math / Logic / Code
- Tables
- Graphs
- Diagrams
- Illustrations
- Animation
- ...

General remarks

Style

Always check the journal $\,/$ conference and author instructions for the general style of tables and figures.

Early

Consider the kind of visualizations you want to use when you are designing your experiment.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

General remarks - cont.

Captions

Captions should make it possible to understand completely what a table or figure shows.

Completeness

By highlighting and discussing the important parts of tables and figures, the text should be understandable just by reading the text.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Variable Types

Experimental variables:

- Independent: Variable that is not changed by the other variables (e.g. age).
- Opendent: Measured variable that is affected by others (e.g. cancer risk).

Data types:

- Nominal / Categorical: Discrete data that cannot be ordered (e.g. people, countries). Operations: count, mode
- Ordinal: Quantities with a natural order (e.g. Likert scale).
 Extra operations: order, median
- Interval: Ordinal + the interval between each value is equal (e.g. Celsius, Fahrenheit). Extra operations: mean, add, subtract
- Ratio: Interval + a natural zero point (e.g. elevation, money). Extra operations: multiply, divide

Intro

3 Graphs

- 4 Effectiveness
 - Color
 - Scales
 - Graphical Integrity
 - Common mistakes

5 Efficiency

- Data-Ink
- Data Density
- Multifunctioning Graphical Elements

6 End

Tables	Graphs	Effectiveness	End
00000			

Tables

Table: Caption (often above table).

Stub	Column heading	Column heading
Row variable 1	×%	×%
Row variable 2	×%	×%
Row variable 3	×%	×%
Row variable 4	×%	×%
Total	×%	×%

(ロト (個) (E) (E) (E) (E) のへの

Multivariate table

Attitude towards uranium mining by age and gender (hypothetical data)

	Number of respondents												
	<2	<25		25-34		35-44		45- <mark>5</mark> 4		55+		Total	
Attitude towards uranium mining	F	M	F	м	F	м	F	м	F	м	F	м	т
Strongly favourable	0	0	1	1	3	1	5	2	3		12	4	16
Favourable	0	0	1	2	3	2	3	1	0	0	7	5	12
Uncertain	0	0	0	0	1	1	2	2	0	0	3	3	6
Unfavourable	1	1	4	3	1	0	0	0	0	0	6	4	10
Strongly unfavourable	4	8	17	7	8	7	2	3	0	0	31	25	56
Total	5	9	23	13	16	11	12	8	3	0	59	41	100

Figure: Table 16.4 from the book.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Tables	Graphs	Effectiveness	Efficiency	End
00000				

Confusion matrix

		Predicted		
		True	False	
Actual	True	tp	fn	
Actual	False	fp	tn	

		Α	В	С	D
/	4				
	В				
(С				
I	D				

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ □▶ ▲ □▶

Table usage

Use a table when:

- Detailed data
- Large volume*
- No trend or pattern

Intro

2 Tables

Graphs

- 4 Effectiveness
 - Color
 - Scales
 - Graphical Integrity
 - Common mistakes

5 Efficiency

- Data-Ink
- Data Density
- Multifunctioning Graphical Elements

6 End

Anscombe

	I	1	1	1	11	1	εv		
x	Y	х	Y	x	Y	x	Y		
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58		N = 11
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76		mean of X 's = 9.0
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71		mean of $Y's = 7.5$
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84	1	equation of regression line: $Y = 3 + 0.5X$
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47		standard error of estimate of slope $= 0.118$
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04		t = 4.24
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25		sum of squares $X - \overline{X} = 110.0$
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50		regression sum of squares $= 27.50$
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56		residual sum of squares of $Y = 13.75$
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91		correlation coefficient = $.82$
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89	J	$r^2 = .67$

Figure: From Anscombe (1973), "Graphs in Statistical Analysis" via VDQI (page 13)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Anscombe

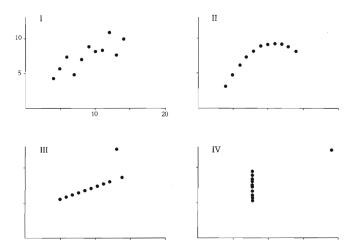
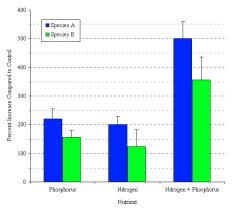
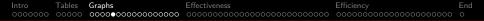



Figure: From Anscombe (1973), "Graphs in Statistical Analysis" via VDQI (page 14)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

2D Chart Anatomy



Responses of lake algae to addition of nutrients

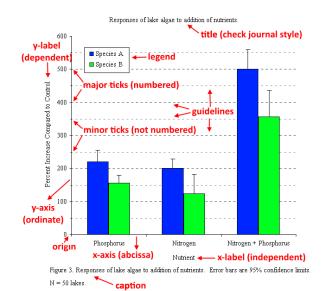

Figure 3. Responses of lake algae to addition of nutrients. Error bars are 95% confidence limits. N=50 lakes.

Figure: Adapted from University of Wisconsin-La Crosse (2001).

э

2D Chart Anatomy

≣ *^* २०

∢ 臣 ▶

2D Chart Anatomy - Axis Offset

Responses of lake algae to addition of nutrients.

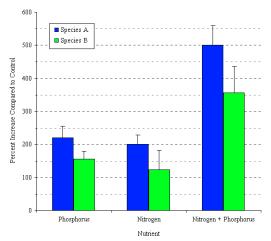


Figure 3. Responses of lake algae to addition of nutrients. Error bars are 95% confidence limits. N = 50 lakes.

< ∃ >

2D Chart Anatomy - Axis Offset

Responses of lake algae to addition of nutrients.

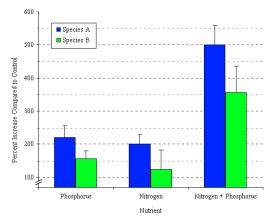
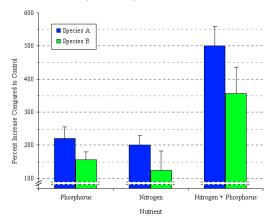
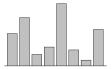


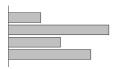
Figure 3. Responses of lake algae to addition of nutrients. Error bars are 95% confidence limits. N = 50 lakes.

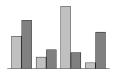
< ∃ >

2D Chart Anatomy - Axis Offset

Responses of lake algae to addition of nutrients.

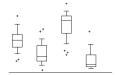




Figure 3. Responses of lake algae to addition of nutrients. Error bars are 95% confidence limits. N = 50 lakes.


< ∃ >

Bar charts

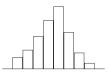
- Use when you want to compare how values of 1 or 2 discrete independent variables affect a numeric dependent variable or count.
- Actual numbers and/or error bars can be added on top of the bars.
- For ordinal data, a histogram may also be used.
- With 2 independent variables, a stacked bar chart can also be used, but this is not recommended for comparisons.

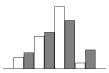


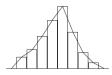
э

イロト 不得 トイヨト イヨト

Box plots


- Box plots are like bar charts with extra information.
- They generally show the 1st, 2nd and 3rd quartile of the data, the range and outliers.





Histograms

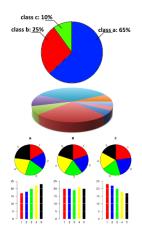
- Use when you want to show the distribution of items over a small number of values of a quantitative variable.
- For ordinal data, a bar chart may also be used.
- Ratio or interval data can be divided into buckets/intervals; otherwise you can use a area chart.
- With multiple variables, use a 3D effect or an overlapping area chart.
- The book calls drawing a line over the histogram a "frequency polygon".

(a) < (a) < (b) < (b)

Stem-and-leaf displays

A stem-and-leaf display let's you show fairly detailed distribution information in the shape of a histogram.

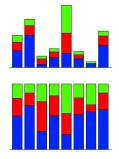
Exa	mple	(Dat	a)					
37,	33,	33,	32,	29,	28,	28,	23,	
22,	22,	22,	21,	21,	21,	20,	20,	
19,	19,	18,	18,	18,	18,	16,	15,	
14,	14,	14,	12,	12,	9, 6	6		


Example from Lane @ OnlineStatBook.

Example (S&L display	/ 1)
3 2337	
2 001112223889	
1 2244456888899	
0 69	

Example (S&L display 2)
3 7
3 233
2 889
2 001112223
1 56888899
1 22444
0 69

Pie charts


- Pie charts can show how some quantity (100%) is divided over various categories.
- Categories often sorted (beware continuity between pie charts).
- Beware perspective (for all charts).
- Difficult to compare categories. Easier to judge percentage of whole.
- Heavily criticized.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Stacked bar charts

- Use to show the composition of a thing varying along some discrete dimension.
- Use a 100% bar chart if the absolute value doesn't matter.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

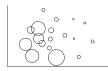
Area charts

- Area charts can be used to show distributions under a continuous independent variable.
- Stacked area charts can also be used to show how compositions vary with such a variable.

э

イロト 不得 トイヨト イヨト

Line charts can be used to show how several numeric quantitative variables change with another variable (e.g. time).


▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Scatter plots

- Scatter plots are useful for seeing the relationship between two quantitative variables.
- Bubble plots let you add another dimension.

(a) < (a) < (b) < (b)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Intro

2 Tables

3 Graphs

- 4 Effectiveness
 - Color
 - Scales
 - Graphical Integrity
 - Common mistakes

5 Efficiency

- Data-Ink
- Data Density
- Multifunctioning Graphical Elements

6 End

	Tables	Effectiveness	Efficiency	End
0000000	00000	 		
Color				
Color				

Journal

Always check the style of the journal!

Legibility

Keep everything legible!

Account for B&W

Even if you use color, make sure your figures are interpretable if someone prints them without or is color blind. (Don't refer to the color in the text.)

Intro	Tables	Graphs	Effectiveness	Efficiency	End
			000000000000000000000000000000000000000		
Color					

Bar chart color

Responses of lake algae to addition of nutrients

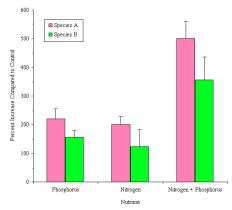


Figure 3. Responses of lake algae to addition of nutrients. Error bars are 95% confidence limits. N=50 lakes.

Figure: Adapted from University of Wisconsin-La Crosse (2001).

э

Bar chart color

Responses of lake algae to addition of nutrients



Figure 3. Responses of lake algae to addition of nutrients. Error bars are 95% confidence limits. N=50 lakes.

Figure: Adapted from University of Wisconsin-La Crosse (2001).

э

Bar chart color - Hatching

Color

Responses of lake algae to addition of nutrients.

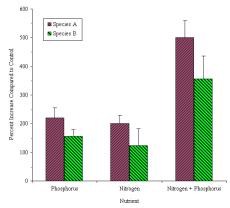


Figure 3. Responses of lake algae to addition of nutrients. Error bars are 95% confidence limits. N=50 lakes.

Figure: Adapted from University of Wisconsin-La Crosse (2001).

Bar chart color - Hatching

Color

Responses of lake algae to addition of nutrients.

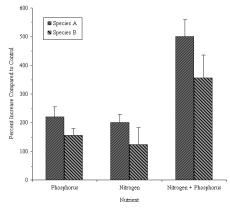


Figure 3. Responses of lake algae to addition of nutrients. Error bars are 95% confidence limits. N=50 lakes.

Figure: Adapted from University of Wisconsin-La Crosse (2001).

Color

Line chart color - Notches and Line Types

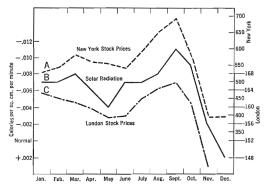


Figure: Use different notches and line types.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Scales

Multiple Y-Scales

A. New York stock prices (Barron's average). B. Solar Radiation, inverted, and C. London stock prices, all by months, 1929 (after Garcia-Mata and Shafner).

Figure: From Dewey & Dakin (1947), "Cycles: The science of prediction", p. 144 via VDQI (page 15)

イロト 不得 トイヨト イヨト

3

Graphical Integrity

Graphical Integrity

Graphical Integrity

The ability of a graph to provide a visual representation that is consistent with an underlying numerical representation that **accurately represents the world**.

Subjectivity

Peculiarities of human perception should be taken into account and accommodated rather than exploited. For example, perceived area of a circle = (actual area)^x where $x = .8 \pm .3$. Solution: clear labeling.

・ロト・西ト・山田・山田・山下

Lie Factor

$\label{eq:Lie} \text{Lie Factor} = \frac{\text{size of effect shown in graphic}}{\text{size of effect in data}}$

Acceptable between .95 and 1.05.

Intro	Tables	Graphs	Effectiveness	Efficiency	End		
			000000000000000000000000000000000000000				
Graphical Ir	Graphical Integrity						

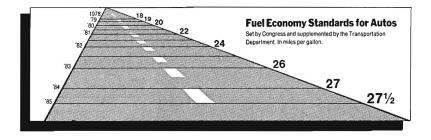
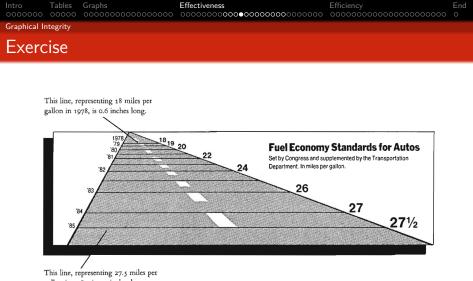



Figure: Adapted from New York Times, August 9 1978, p. D-2 via VDQI (page 57)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

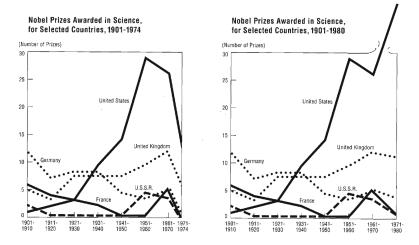
gallon in 1985, is 5.3 inches long.

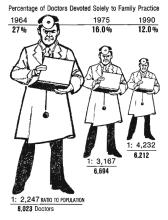
Figure: From New York Times, August 9 1978, p. D-2 via VDQI (page 57) Lie factor: 14.8 or 111

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Graphical Integrity

Design and Data Variation




Figure: From National Science Foundation, Science Indicators, 1976 (Washington D.C., 1976) via VDQI (page 60)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ □▶ ▲ □▶

Graphical Integrity

2-D representation of 1-D data

THE SHRINKING FAMILY DOCTOR In California

Graphical Integrity

3-D representation of 1-D data

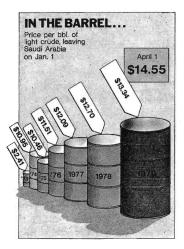


Figure: From Time, April 9 1979, p. 62 via VDQI (page 62) Lie factor: 9.4 or 59.4

・ロト・西ト・モート モー シタク

Money

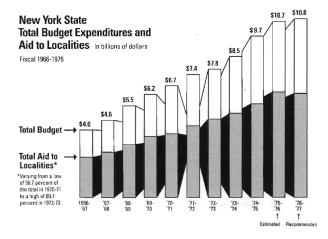


Figure: From New York Times, February 1 1976, p. IV-6 via VDQI (page 66)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Graphical Integrity

Correct for inflation and other factors

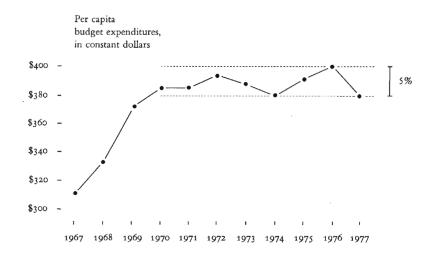


Figure: From VDQI (page 68)

Context

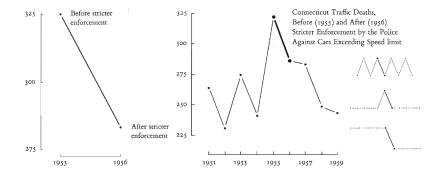


Figure: From Campbell & Ross (1970), "The Connecticut Crackdown on Speeding: Time Series Data in Quasi-Experimental Analysis" via VDQI (page 74)

イロト 不得 トイヨト イヨト

э

Context

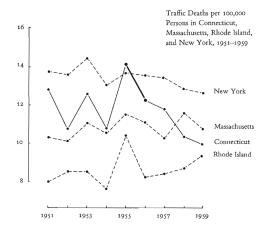


Figure: From Campbell & Ross (1970), "The Connecticut Crackdown on Speeding: Time Series Data in Quasi-Experimental Analysis" via VDQI (page 75)

イロト 不得 トイヨト イヨト

э

Graphical Integrity

Numbers have order and magnitude

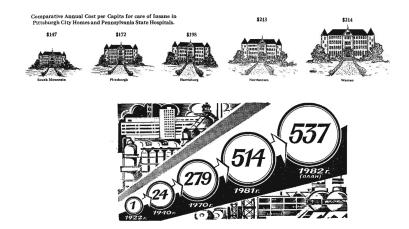


Figure: From Pittsburgh Civic Commission (1911), "Report on Expenditures of the Department of Charities" and Pravda, May 24 1982 p.2 via VDQI (page 55 and 76)

・ロト ・母 ト・ヨ ト・母 ト・ロト

Truncated Y-Axis

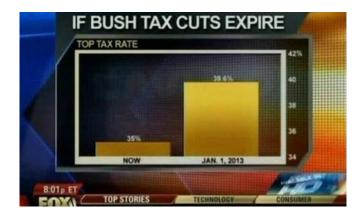


Figure: Via Parikh @ Gizmodo.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Different Y-Axis

Same Data, Different Y-Axis

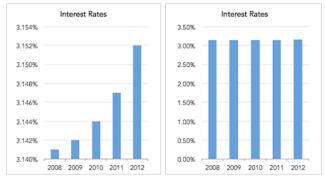
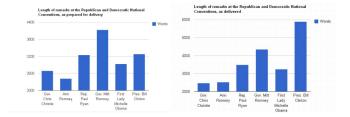
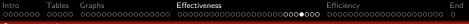
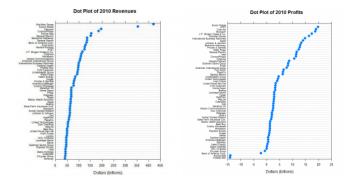



Figure: From Parikh @ Gizmodo.


Common mistakes

Different Y-Axis


Figure: From Cliff @ Washington Post.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Common mistakes

Different Order

Figure: Via Robbins @ Forbes.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Common mistakes

Different Order

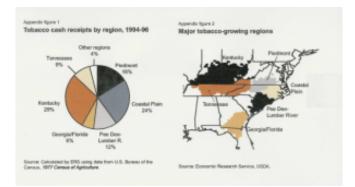
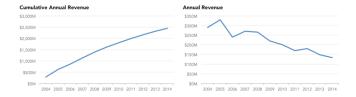
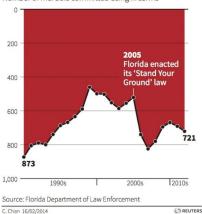



Figure: Via Robbins @ Forbes.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Common mistakes

Poorly used cumulative graph


Figure: From Parikh @ Gizmodo.

イロト 不得 トイヨト イヨト ヨー ろくで

Common mistakes

Ignoring conventions and expectations

Gun deaths in Florida

Number of murders committed using firearms

Figure: Via Parikh @ Gizmodo + () + () + () + ()

Intro

2 Tables

3 Graphs

- 4 Effectiveness
 - Color
 - Scales
 - Graphical Integrity
 - Common mistakes

5 Efficiency

- Data-Ink
- Data Density
- Multifunctioning Graphical Elements

6 End

Intro	Tables	Graphs	Effectiveness	Efficiency	End
				000000000000000000000000000000000000000	
Data-Ink					

Data-Ink

Data-ink

Data-ink is the non-erasable core of a graphic; the non-redundant ink arranged in response to variation in the numbers presented.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ □▶ ▲ □▶

Data-Ink Ratio

data-ink

 $\mathsf{Data}\mathsf{-}\mathsf{ink} \ \mathsf{ratio} =$

total ink used to print the graphic

= proportion of a graphic's ink devoted

to the non-redundant display of data-information

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 = 1.0 - proportion of a graphic that can be erased without loss of data-information.

Intro	Tables	Graphs	Effectiveness	Efficiency	End
				000000000000000000000000000000000000000	
Data-Ink					

Examples

Data-Ink

• Lines in a line graph, bars in a bar graph, dots in a scatter plot, etc.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

- Labels
- Data values

Non-Data-Ink

- Axes
- Ticks
- Grid lines
- Decorations

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Data-Ink

Maximize Data-Ink-Ratio

- Depict more data
- Erase non-data-ink
- Erase redundant data-ink

Within reason!

0000000 00000 00000000000000 000000000	Intro	Tables	Graphs	Effectiveness	Efficiency	End
Data-Ink					000000000000000000000000000000000000000	
	Data-Ink					

Exercise

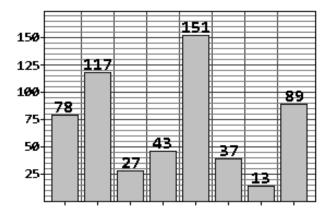


Figure: See VDQI (page 96 and 126-128)

How can we increase the data-ink-ratio? $(a = b + a = b) = -2 \circ e^{b}$

Intro 0000000			Effectiveness	Efficiency 000000000000000000000000000000000000	End O			
Data-Ink								
Exerc	Exercise 2							

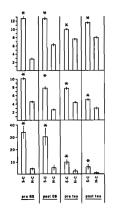


Figure: From Kuznicki & McCutcheon (1979) via VDQI (page 100)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Intro	Tables	Graphs	Effectiveness	Efficiency	End
				000000000000000000000000000000000000000	
Data-Ink					

Exercise 2

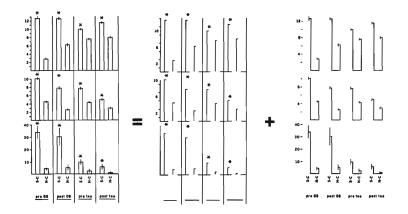


Figure: From VDQI (page 102)

・ロト ・聞ト ・ヨト ・ヨト 三日

Intro	Tables	Graphs	Effectiveness	Efficiency	End
				000000000000000000000000000000000000000	
Data-Ink					

Sparklines

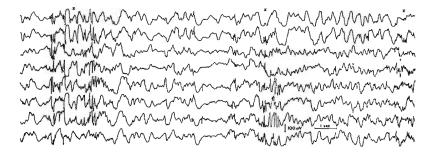


Figure: From Kooi (1971), "Fundamentals of Electroencephalography" via VDQI (page 93)

< ロ > < 同 > < 回 > < 回 >

э

	Tables 00000	Effectiveness	Efficiency 000000000000000000000000000000000000	End O
Data-Ink				
Boxp	lots			

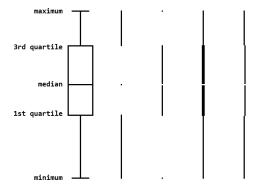


Figure: After VDQI (page 123-125)

Intro 0000000			Effectiveness	Efficiency 000000000000000000000000000000000000	End o
Data-Ink					
Rang	e-Fra	ame			

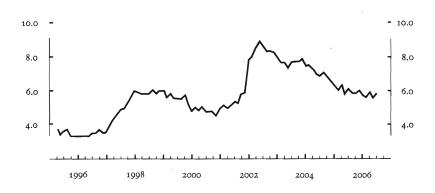


Figure: From VDQI (page 132)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ● ◆○◆

Data-Ink

Range-Frame

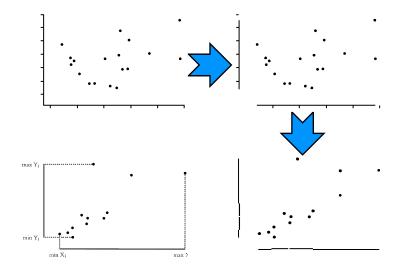


Figure: From VDQI (page 130-132)

€ 990

Intro	Tables	Graphs	Effectiveness	Efficiency	End
				000000000000000000000000000000000000000	
Data Isla					

Dot-Dash-Plot

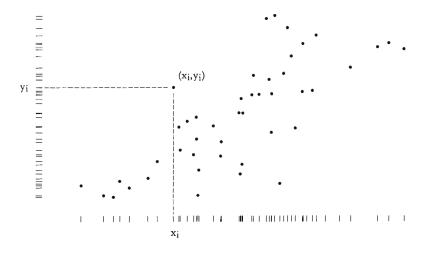


Figure: From VDQI (page 133)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Data-Ink

Distribution on axes

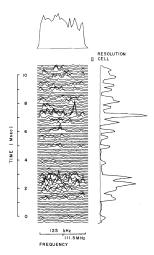


 Figure: From Hawkins & Rickett (1975), "Pulsar Signal Processing", p. 108 via

 VDQI (page 134)

	Tables 00000		Effectiveness	Efficiency	End 0
Data Densi	ty				
Data	Den	isity			

data density of a graphic = $\frac{\text{number of entries in data matrix}}{\text{area of data graphic}}$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Data Density

Maximize Data Density

- Depict more data
- Shrink the graphic
- Use multifunctioning graphical elements

Within reason!

Small Multiples

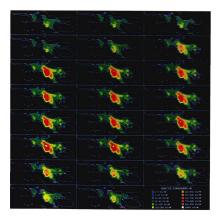


Figure: From video based on McRae, Goodin & Seinfeld (1982), "Development of a Second-Generation Mathematical Model for Urban Air Pollution" via VDQI (page 170)

Multifunctioning Graphical Elements

Multifunctioning Graphical Elements

Advice

Mobilize every graphical element, perhaps several times over, to show the data.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intro Tables Graphs Effectiveness Efficiency End

Multifunctioning Graphical Elements

Stem-and-leaf display

A stem-and-leaf display let's you show fairly detailed distribution information in the shape of a histogram.

Example (Data) 37, 33, 33, 32, 29, 28, 28, 23, 22, 22, 22, 21, 21, 21, 20, 20, 19, 19, 18, 18, 18, 18, 16, 15, 14, 14, 14, 12, 12, 9, 6

Example from Lane @ OnlineStatBook.

Example (S&L display 2)
3 7
3 233
2 889
2 001112223
1 56888899
1 22444
0169

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

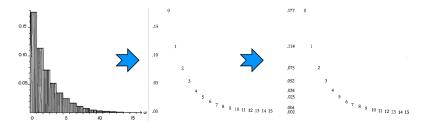


Figure: From stylesheet of the Journal of the American Statistical Association (left) and VDQI (page 150-151)

イロト 不得 トイヨト イヨト

3

Intro Tables Graphs Effectiveness Efficiency End

Multifunctioning Graphical Elements

Quiver Plot

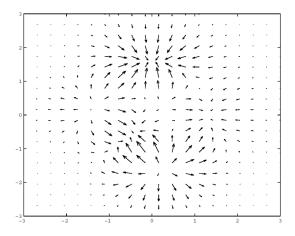


Figure: From what-when-how

(日) (四) (王) (王)

æ

Multifunctioning Graphical Elements

Chernoff Faces

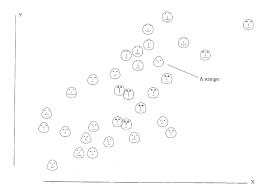


Figure: From Wainer & Thissen (1981), "Graphical Data Analysis" via VDQI (page 142)

See also Chernoff (1973), "The Use of Faces to Represent Points in k-Dimensional Space Graphically" and Wikipedia.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Intro Tables Graphs Effectiveness Efficiency End

Questions?

