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Abstract

High level learning by imitation consists of learn-
ing to emulate high level human cognitive pro-
cesses. We have been able to solve this problem
within a specific setting, searching for a treasure
in a maze. The human behaviour can be recorded
as time series of observable variables, representing
the portion of the human’s problem-solving strat-
egy which is apparent to an outside observer. These
can then be subjected to several layers of construc-
tive generalisation, until the strategy is abstracted
from the original settings and can thus be applied
to new ones.

1 Introduction
Current agent architectures are often built on the model of hu-
man cognitive processes such as they are described by cogni-
tive scientists. The lower level corresponds to reactive pro-
cesses, such as reflexes, only dealing with the immediate sit-
uation; the middle level corresponds to deliberative reason-
ing and as such can also deal with the past and the future;
the top level corresponds, among other mental tasks, to even
more long-term strategical decision making which leads to
goal generation (see for example[Sloman, 2001]).

Learning can occur at any or all levels of the control archi-
tecture of an artificial agent but the gap between human strate-
gies and perception-action pairs is too wide to be bridged ina
single learning step. We followed cognitive science architec-
tural models of the human cognitive processes to gradually
increase the complexity of what was being learnt, from the
observable perception-action pairs which constituted ourraw
data, to meaningful sequences of them which constituted ba-
sic actions, and onwards to tactics and strategies. The success
of our attempt contributes to the validation of these cognitive
science models.

Inducing the plans of a human placed in a problem solv-
ing context is also a plan recognition task. The human makes
mental plans about how to solve the problem and from the
time series of his actions these plans become partially appar-
ent. In this paper the “mental plans” are called the tactics.

We were not interested in the performance of such or such
human strategy, we were interested in how they could be
learnt. But high level learning by imitation has two major

effects. As the basis of our system is the average human be-
haviour, “inhuman” mistakes such as going round in a circle
or going backwards and forwards along the same path are
avoided. As the intrisic variability of human behaviour is re-
produced, but bounded by a function of the standard devia-
tion of the humans’ behaviours, the resulting robotic strategy
turned out to be an efficient sweeper.

For the final step, from tactics to strategies, we found that
a robotic strategy could be given a mathematical formulation.
Comparing possible robotic strategies to human strategiesen-
abled us to define a similarity measure of “human likeness”
for the robotic strategies. Such definitions, even in a limited
context, are a step towards building an engineering blueprint
of human intelligence.

2 Related works
A large amount of work has been done in the field of robot
learning by imitation, a relatively new (about twenty years
old) field of research, see for example[Billard and Siegwart,
2004], [Dillmann, 2004] and[Schaalet al., 2003]. This field
takes inspiration from a wide range of disciplines, including
psychology, biology, neurobiology, etc.[Alissandrakiset al.,
2002], [Billard and Hayes, 1999], [Demiris and Hayes, 2001]
and[Calinon and Billard, 2007]. An example among others
of the necessary multidisciplinarity is[Alissandrakiset al.,
2006] who propose a mathematical solution to the correspon-
dence problem, which originally comes from animal psychol-
ogy: they formalise the correspondences by giving mapping
matrices to link agents with different morphologies. Otherre-
search papers present work which is less biomimetic, for ex-
ample[Calinonet al., 2007] who present an architecture for
extracting the relevant features of a given task and then gener-
alise the acquired knowledge to other contexts. They demon-
strated the effectiveness of their architecture by implementing
it on a humanoid robot learning to reproduce the gestures of
a human teacher. A formal definition of plan recognition can
be found in[Kraus, 1991].

3 Experimental settings
In a sequence of psychological experiments, blindfolded hu-
man volunteers explored a maze1 in search of a ‘treasure’

1The mazes were not virtual, they were built with rows of tables
and sometimes cupboards in a large room.



and, while doing so, expressed their search strategy2 by se-
quences of perception-actions pairs, which were recorded.
Perception here was limited to touch, which could be ob-
served on the videos. Actions were limited to moving in
the maze, touching objects and picking up the treasure, these
could also be observed. The psychologist[Iemmi, 2005] and
the mixed team[Tijus et al., 2007] showed that the volunteers
in the mazes had several different goals which they combined
through some thought process akin to multi-criteria optimi-
sation to mentally construct and evaluate their behaviours.
On top of their given goal, finding the treasure, their most
often used strategies included the goals of not getting lost,
of not exploring the same place twice, of not bumping into
obstacles, etc. We performed a detailed analysis, including
a digitalisation, of the videos showing the behaviour of 10
of these volunteers, called G11, G1 2, G1 3, G3 1, G3 2,
G4 1, G4 2, G4 3, G7 1 and G72 in the following. We thus
could run a close3 replicate of their behaviour in our system
and look at this replicate. Obviously, our final goal was not
to obtain such a replicate but to understand the underlying
strategy of the volunteer and to become able to reproduce it
in new contexts.

4 From observables to control variables
Automatically extracting from a database the strategies used
by humans in a problem-solving situation takes more than a
good preprocessing and then running the database through the
appropriate data mining algorithm[Felkin, 2008]. To go from
the database of observables to heuristics, we had to define a
middle ground.

4.1 The observables
The raw data contained in the database, called the observ-
ables, are indicated in fig.1. They are the basic facts such as
the position of the person in the maze at a given time step, the
position of his/her hands, etc. 50 observables were recorded
every quarter of a second in what we call the “log files”. Each
maze also has a static description indicating the position of
the obstacles, of the treasure, etc.

Fig.1 models the human’s cognitive processes as a very
simplified version of the HCog-Aff (Human Cognitive Af-
fects, [Sloman, 2001]) model, and superimposes our defini-
tions. Our use of the HCog-Aff model is explained in details
in [Felkin, 2008].

A subjective impression about the current search activity of
the person in the maze was recorded at each time step (it is our
50th observable). As the videos ran in slow motion, this value
was set to one of three possible values: “Systematic search”,
“Random search”, “No search”. We call this observable the
“class” variable and it’s use is justified in section 5 (it canbe
dispensed with but using it reduces run-time complexity).

2Our use of the expression “search strategy” here does not imply
the volunteers were searching according to an explicit plan. Ran-
domly searching through the maze is also a “search strategy”, and
so is “not searching at all”.

3Our replicates are only “close” because the recordings are noisy.
We believe this noise contributes to the robustness of the ensuing
generalisations but we did not test this hypothesis.

Figure 1: From observables to strategies

4.2 The primitives

The first difference between observables and primitives is that
observables are observable at every time step, what happened
during the previous time step(s) notwithstanding, while prim-
itives are combinations of observables, and sometimes of ob-
servables and static maze descriptors. All movement descrip-
tors, which require a comparison between at least two con-
secutive time steps, can only be primitives.

Another important difference is that primitives exclusively
make use of the information available to the human. We are
no longer modelling a maze and a person moving in it as seen
from the outside, we are modelling the human’s perceptions
and basic actions. So all the(X,Y ) coordinates information
is removed and replaced by descriptors such as “the person
is near a table”. What is more, this type of information is
only recorded when the human knows it (in this case, once
the person has touched the table).

We often encountered questions such as “when a person is
walking near an object, which is the angle interval between
the edge of the object and the direction of mouvement which
would best describe whether this person is following the ob-
ject or not?”. We solved this question, and many others,
with the decision tree inducer C4.54 [Quinlan, 1993] [Quin-
lan, 1996]. With 49 observables, and no fixed number of
time steps limit, we could generate a huge number of pos-
sible combinations.

Some “temporary class” descriptions were sometimes
recorded on subsets of the logs. In our example, we recorded
a “temporary class” which has three possible values for the
obstacle following behaviour: “strong”, “weak” and “none”.
Then we let C4.5 build the corresponding primitive descrip-
tions from the observables.

We settled our choice on 36 primitives, some of which were
entirely hand-crafted while others were automatically or par-
tially automatically constructed.

4We tried a few classification algorithms which met the follow-
ing criteria: generating explicit models, being readily available and
being fast. C4.5 turned out to be the best predictor of our class at-
tribute among them.



Figure 2: From primitives to body mouvements

4.3 The tactics

Each tactic is defined by a combination of observables and
primitives. We defined 4 tactics:

• the goal-related treasure hunting tactic, called the
“search tactic”,

• the tactic used by the volunteer to cope with the fact
that he or she has to move around blindfolded, called
the “moving tactic”,

• the tactic causing the behaviour of the volunteer encoun-
tering an obstacle, which has a mixed purpose of trea-
sure hunting and spatial orientation, called the “obstacle
following tactic”

• the personal safety tactic called the “obstacle detection
tactic”.

In [Felkin, 2008] we explain in details why and how this
particular decomposition was chosen. The combined effect of
enacting one of each 4 types of tactics is a strategy, a formal
definition of a strategy is given in the next section.

4.4 The control variables

Fig.2 shows the path we followed in this work: First a bottom-
up generalisation, in several steps, which started with thelog
file recording the movements of the human and was achieved
with the help of machine learning algorithms (as seen above).
Then the top-down implementation of the induced strategies
into control variables (“Ctr. vars” in fig.2) and robotic body
mouvements (“Body mvt”).

The robot controller programming language which we im-
plemented gives the actions which should be performed for
all possible situations. (See the next section for a definition
of “situation variables” and “control variables”). When we
reached this stage we knew how to express the strategies in
terms of tactics and the tactics in terms of primitives and ob-
servables. So we sorted our task-relevant actions (see below
for how these were determined) according to body parts. The
legs are considered a single body part. The lower levels of the
controller does not need to know whether the robot should
move forwards because it is part of its search tactic or be-
cause it is part of its obstacle following tactic. This was also
a way of eliminating the conflicts which would certainly have
arised, in a probabilistic context, if we had attempted to im-
plement the tactics independently one from the other.

4.5 The body mouvements
This part translates control variable values, such as “follow
the table by moving alongside it and sliding your nearest hand
along the edge of it to guide yourself” into the correspond-
ing body mouvements. The feedbak from the environment is
again expressed strictly according to what the person in the
maze would know. For obstacle following5 the person needs
to know whether his/her hand is touching the flat top of an
object, the edge of it, the side of it, whether his/her arm is
extended,etc.

5 Definitions

5.1 General definition of a strategy
A situation variable is a descriptor of perceptions of the envi-
ronment external to the controller6. Each of theM situation
variables has a finite and known number of possible values.

A control variable is a descriptor of robot action. Each
of theN control variables has a finite and known number of
possible values.

Formally, a robotic strategy is:

• A finite set of external situation states,E. Each situa-
tion state ofE is expressed by a vector ofM situation
variables values: (e1, ...,eM ).

• A finite set of internal action states,I. Each action state
of I is expressed by a vector ofN control variables val-
ues: (i1, ..., iN ).

• An action transition matrix mapping all possible situa-
tion states to all possible action states. The values con-
tained in this matrix are the probabilities of the robot en-
acting the behaviour described by an action state given a
situation. We call itΛA = aij .

• An action duration mean transition matrix mapping all
possible situation states to all possible action states. The
values contained in this matrix are the means, should the
robot enact the behaviour described by an action state,
of the duration of all control variables of this behaviour.
We call itΛAD = ad−ij .

• An action duration standard deviation transition matrix
mapping all possible situation states to all possible ac-
tion states. The values contained in this matrix are the
standard deviations, should the robot enact the behaviour
described by an action state, of the duration of all control
variables of this behaviour. We call itΛASD = asd−ij .

Whenever the situation state of the robot changes, the robot
goes into a certain action state chosen randomly according to
the probabilities ofΛA. It draws durations, in independent
draws, for all the control variables values according to the
Gaussian probability distributions defined byΛAD andΛASD

and starts a count down to implement these durations.

5We use this example all along because the obstacle following
tactic was the simplest to describe.

6Not necessarily “external to the robot”, the input from a sen-
sor describing the state of the internal battery would be a situation
variable value.



When the situation state of the robot does not change but
one of the control variable values reaches the end of its ran-
domly assigned number of time steps, the robot goes into an-
other action state chosen randomly, according to the proba-
bilities of ΛA, among all action states which have the same
values for all the other control variables and a different value
for the control variable which is due for a change. It draws a
duration for this new control variable value according to the
probability distributions defined byΛAD andΛASD.

So switches from one action state to another can be trig-
gered both externally, by a change of situation state, and inter-
nally, by the reaching the end of some control variable value
life span. When the log file shows a such a switch happen-
ing independently of these two conditions, it corresponds to
a change of strategy. Changes of strategy are defined by a
subset of situation states, either of which triggers the change,
by a consecutive sequence of situation states belonging to this
subset, or by a time limit assigned to each consecutive strat-
egy.

When a strategy is reproduced from a given log file, the
probabilities of transitions which never occurred can be set
to zero and the corresponding values ofΛAD andΛASD left
undefined.

This definition of a strategy resembles a Hidden Markov
Model (HMM). OurΛA corresponds to the confusion matrix
of a HMM. But we have no internal state transition matrix, it
is replaced by two external matrices, grounding every inter-
nal transition probability into the external context and time.
This also removes the need for the vector of initial internal
state probabilities. Another difference is that the count down
mechanism makes the internal state of the system dependant
not only upon the previous internal state, nor upon any fixed
number of previous states, but upon a variable number of pre-
vious states.

Our two external matricesΛAD andΛASD models the vari-
ability over time intrinsic to human behaviour. In every day
speech, a “robotic behaviour” has come to mean an inhu-
manly rigid and repeating behaviour. Our goal being to learn
human problem-solving strategies our model needed this flex-
ibility over time. Moreover, we believe that this flexibility is
one of the advantages humans have over robots, an advan-
tage which contributes to making humans more efficient in
real-life situations.ΛAD andΛASD also have “the opposite
effect” as they enable the robot to “remember what it is do-
ing” and so preclude erratic behaviour.

Fig.3 illustrates the importance of considering the dura-
tions. If the binary variable represents “Moving forwards”,
the top part of fig.3 would be a slow walk, the discretisation
in time steps and integer distance units filling the log with al-
ternating values “1” and “0”. The lower part would be a fast
walk followed by a pause. The average value of this variable
is obviously the same top and bottom, one half, so these two
very different behaviours can only be distinguished by the av-
erage durations of consecutive series of values.

5.2 Simplifications and necessity of using Machine
Learning algorithms

Brute force mimicking of a human strategy according to this
definition of a strategy would be trivial (the matrices can be

Figure 3: Same average, different behaviour

filled by counting the relevant occurrences in the log file cor-
responding to the strategy of this human) but it would also
be intractable in any but the most basic settings and it would
require very large log files. Luckily strong simplifications
are possible without deterring from human-like behaviour.
In a complex situation these simplifications cannot be hand-
crafted, they can only be achieved through the use of machine
learning algorithms.

Our definition has an inherent simplicity in that it only
takes into account the influences of situation variables upon
action variables. The influences of action variables upon situ-
ation variables are not part of our definition of a strategy. The
influences of action variables upon situation variables, for ex-
ample the probability of reaching a table after having walked
straight ahead during 10 seconds, describe the maze and not
the strategy.

One simplification consists of reducing the length of the
vectors of E. This means clustering all possible situationsand
identifying for every cluster the most significant descriptors.
This solves the problem of defining what should be done if the
robot encounters a situation the human never encountered. In
our settings we managed to reduce the length of the vectors
of E to 1 and to reduce all our situation variables to binary
variables. We were unable to make our situation descriptors
mutually exclusive, but we were able to order them according
to their influence, which is the next best thing.

Another simplification is to eliminate all task-achievement-
irrelevant behaviours (even if the psychologists find them
meaningful). Attribute construction and attribute selection
algorithms are used to build and select useful descriptors.A
class attribute can be defined and its values set to correspond
to different types of strategy, even if differentiating among
these particular types of strategies is irrelevant for the in-
tended robotic controller. This can be done upon a subset
of the log but it has to be done if this simplification is to be
used. Otherwise the attribute construction and selection algo-
rithms have no way of “knowing” whether we are interest in
goal-directed actions or in the actions indicating, for example,
whether the person in the maze is enjoying him/herself.

For implementation purposes it is obvious that the lower
tail of the Gaussian distributions controlling the duration of
an action should be trimmed. It would be meaningless for



the robot to attempt to do something during -3 time steps, so
the lower tail is trimmed at zero or above. The higher tails
are also trimmed, the reason for this is explained in the next
section.

5.3 Definition of human-like strategies
We define a human-like robot strategy as a strategy which
component behaviours are enacted not more than three stan-
dard deviations away from the average number of time steps
during which the humans enact them, or not enacted at all.
(The “not enacted at all” provision is necessary to include set-
tings where not every possible behaviour can be enacted, for
example fingering a dangling set of keys cannot be enacted if
there are no dangling set of keys in a given maze). The num-
ber of standard deviations required to be within limits is set
to three according to our empirical observation that humans
stay within this range, for all behaviours.

We define a similarity measure of “human likeness” as
the average distance between the average number of time
steps a robot enacted a behaviour and the average number
of time steps the observed humans enacted this behaviour.
Behaviours which are never enacted are not taken into ac-
count. Our similarity measure becomes less and less mean-
ingful when the robotic environment become more and more
different from the human one.

We define a higher level imitation learning control system
as a control system that is able to observe a set of human
behaviours, find out the mean and standard deviation of the
number of occurrences of these human behaviours and gen-
erate a control respecting the human law of ”either you do
nothing or, if you act, then never go either over or under the
limit of three times the standard deviation”.

Justification: as already mentioned, humans tend follow
strategies which composing behaviours avoid being more
than three standard deviations away from the average of these
behaviours. When we set up a programming language, we
tested what would happen when this “definition by observa-
tion” was not implemented. We very soon observed that the
programs that do not follow this rule will behave in typically
inhuman ways, repeating the same actions in a loop, being
caught for ever in a particular behaviour etc.

Restriction: The settings have to be comparable. If our
robot, after having observed humans in mazes mostly made of
tables and sometimes of cupboards, was sent out to explore a
maze mostly made of radiators and only containing one small
table, it would make no sense for it to spend as much average
time as the humans exploring a table.

6 Curiosity and an example of strategy
Curiosity is a natural drive towards exploration and a natu-
ral incentive for learning. It has been shown to be stronger in
wild animals.[Skinner, 1922] wrote that a flighty animal such
as the pronghorn antelope will approach a person lying on the
ground waving a red flag. It can be found in their genomes:
In an experiment with chickens,[Murphy, 1977] found that
chicks from a flighty genetic line were more likely to panic
when a novel ball was placed in their pen, but they were also
more attracted to a novel food than birds from a calm line. It

Figure 4: Left: actual G72 run. Right: simulated G72 run.
The unique objects, in white, are the entrance, the light switch
and a box on the wall.

is not a coincidence that curiosity is genetically linked with
the propensity to take flight[Murphy, 1977]. Curiosity can
lead to dangerous behaviour. If among some hypothetical
swarm of Mars robot some are more curious than others, they
would also have to be programmed to explore new and in-
teresting texture carefully and to communicate their results
to the other robots. So if one is curious about a landslide
it could either escape it or, at least, prevent the others from
also getting caught in it. A robot landing on an unexplored
planet should not ignore objects it was not programmed to en-
counter, or it my pass by some interesting new discovery (or
ignore something dangerous). Rodney Brooks, among oth-
ers, argues that a fleet of cheap autonomous robots would be a
more efficient Martian explorer than a few more sophisticated
but remotely controlled robots[Brooks and Flynn, 1989]. In
a population, curiosity leads to a wide variety of behaviours
and so increases the likelihood of discovering efficient strate-
gies. The behaviours of the volunteers in the mazes which
were due, according to the psychologists[Tijus et al., 2007]
to curiosity were varied and often unique. This diversity, and
the diversity of the objects which were the subjects of the vol-
unteers’ curiosity, lead to the generalisation of these objects
under the denomination “unique objects” because there was
only one of each kind in the mazes. They included a dangling
set of keys, a video camera lying on a table, etc.

The psychological experiment[Iemmi, 2005] this work ex-
tends established that the volunteers built mental maps of
their surroundings by asking the volunteers to draw a map of
the maze they had visited, and though none of them had ever
seen it with his/her eyes the psychologists got some rather ac-
curate maps. The people in the maze were in the situation of
a robot with limited sensor capabilities, and in this uncertain
world, unique objects acted like tactile beacons. G72 could
have had an underlying strategy very different from that of
the robot, and the apparent matching could be purely coin-
cidental. The plan she drew, though, indicates that she had
fully grasped the circular nature of the G7 maze. She also
indicated where the door was. G72 had been following the
walls or the rows of tables against the walls when she encoun-
tered the door frame and its light switch for the second time.
G7 2 realised she had gone all round the G7 maze. She com-
pletely modified her search behaviour and started exploring



Figure 5: 10 minutes run in the G4 maze

the empty space. We can see in fig.4 (left) that her strategies
before and after the second contact with a unique object are
very different.

Our robot learnt to emulate these strategies, and the change
of strategies depending upon the second encounter with a
unique object. A (very) simplified rewritting of these rules
is:

• At first, go straight until you encounter something.

• Then, choose a random direction and follow the obsta-
cles. Remember all unique objects you encounter.

• When you come for the second time upon a unique ob-
ject, stop following the obstacles. Choose a random
open direction and go off into the empty space.

On the run illustrated fig.4 (right), the robot was luckier
than the human, as it found the treasure after having covered
a shorter distance. With other initialisations of the random
number generator, the robot’s path can be longer, this version
was chosen because it is easy to interpret it visually.

7 Results
We consider that the fact that some human problem-solving
strategies are learnable is more important than the actual
strategies being learnt here.

7.1 Reasons for the lack of comparisons between
robot and human performance

The purpose of the volunteers was to find the treasure (or, in
some cases, for one of them to find the treasure, after which
they could all walk out). So their performance in terms of
time to achievement and/or ground coverage depended too
much upon the original location of the treasure for perfor-
mance comparisons to be made. We only had the logs of ten
human runs. Each human only went through a maze once.
They did not all go through the same maze. Three humans
definitely did not spend all their time in the maze searching
for the treasure. So such comparisons would in any case have
had low statistical significance.

The logs of “performant humans”, who found the treasure
quickly, do not generate better controllers. In fact in one
case it was quite the opposite: G11 used a systematic right-
handed blind man walk: she followed the wall on her right,
thoroughly exploring all objects she encountered on her right
and ignoring anything on her left. She quickly found the trea-
sure because it was located on the ground, near a radiator
which was fixed to the wall. The corresponding controller
makes the robot go round in circles following the outside
perimeter of the maze and never explores the interior so is
definetely not a good sweeper. G11 only covered about a
tenth of the maze before finding the treasure. In terms of time
to achievement she was fast, in terms of ground coverage she
was very slow.

On average the humans took 11’32” to find the treasure.
Our controller induced from the combined logs of all hu-
mans reached between 78% and 94% of all reachable squares
(ground and tables) at least once after 10 minutes, depend-
ing on maze size and complexity. But concluding that, given
uniformly random treasure locations, the robot did better than
the humans would be, to say the least, premature.

Given these facts and lack of human-related data we regret-
fully forwent comparison measurements.

7.2 Robot results
Our program can read the log file of any individual human
volunteer and automatically translate it into an implemented
robotic strategy. But the results we give here are the results
of the program generated from all logs joined together.

Fig.5 records the track of such a run of our program in
the G4 maze. The unreached squares, about 14%, are the
ones which are part of the (white) ground and not touched
by the track. We could also have unreached squares on the
tables, though this is not the case here: the robot went at least
once along a side (or both) of all table-made “maze walls” and
explored them all (the track shows the position of the body of
the robot, not the position of the hands).

The settings for the following were the four mazes from
which one or several logs had been drawn, and six extra (in-
vented) mazes used for testing purposes.

• The performance was not better in the “known” mazes
than in the invented mazes, showing that the strategies
had really been abstracted from their original settings.

• All tables had been explored after at most 11 minutes
(scale and speed corresponding to the real settings).

• On average, 83% of the tables had been explored after 3
minutes.

• Dividing the ground in squares 20 pixels across7, which
corresponds to the average “width” of a human as seen
on the videos, between 78% and 94% of all reachable
squares had been reached at least once after 10 minutes,
the actual average values varying according to maze size
and complexity.

7We were given the plans of the mazes by the psychologists, but
these plans had no scale. When we inquired about it we were told
that the corresponding rooms still existed and could be measured.
We declined and used pixels for our distance unit.



• These percentages increase with run duration.

Many performance measurements can be applied to such
settings. Strategies were also evaluated in other terms, in-
cluding according to very empirical impressions.

Our goal was to show that the strategies of humans in a
problem-solving situation are learnable, not to implementan
efficient sweeper. We noticed that we produced proper mod-
els of inefficient behaviours as well as of efficient ones. For
instance, the psychological bias “bottles are on tables andnot
on the ground” was learnt by our robot. We consider this a
success even though it detracts from search efficiency when
the treasure is on the ground.

8 Conclusion
The primary purpose of this work is showing that humans
when they are in position of solving a problem make use of
strategies that can be analysed and transferred to a robot.

Obviously, it could be possible to reproduce the exact be-
haviour of the observed humans and we have the “robotic
simulations” which do so, (noise excepted). These traces are
very useful in order to compare what a “real human” does
with what a “simulated human” does. Inversely, these exact
reproductions are useless to robotics since the humans are al-
ways observed in a particular setting and the slightest change
in this setting would make the trace useless. Similarly, they
are not very useful to the psychologist since they are nothing
more than a digitalised version of the video we started from.

This is why it is necessary to analyse the human behaviour
and to generalise it to problem solving strategies that can ap-
plied in any setting, and to other problems as well, as long as
these strategies are meaningful for the new problem.

Given a relevance indicator (the class attribute), attribute
construction and selection can be performed with the use of
inductive algorithms to go from observables to primitives and
from primitives to tactics. Once the tactics are defined, the
“shapes” the strategies can have become apparent. A strategy
“shape” can then be automatically filled with relevant numer-
ical values by several means, including automated ones.

We believe that with the use of learning algorithms the
whole process could be automated even more. In the future,
given an adequate mean to acquire a set of observables, a
robot might be able to learn a human strategy with very little
human intervention.
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