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Abstract

This report summarizes work on a research framework for studying the evolution of human and
animal creativity. The work has resulted in a method for quantifying creativity, a simulation
apparatus for constructing complex, deterministic, evolving worlds, and a methodogogy for ex-
ploring the mechanisms of creative behavior in simulated creaturs. The theoretical foundation of
the framework is also described, including the relationship between creativity, randomness and
logic. The primary questions addressed in the first steps of this work are the relationship be-
tween environmental complexity and the evolution of cognitive mechanisms underlying creative
behavior, and to what extent creativity is bound by rules embedded in the environment in which
cognition evolves.

Keywords: Creativity, Intelligence, Intelligent Agents, Artificial Intelligence, Emergence, Simula-
tion, Evolution, Autopoiesis, Deterministic Systems, Cellular Automata, Complexity

1 Introduction

Through creativity the human race has learned to build complex technology far beyond that of any
other species on the planet (Figure 1). However, the scientific study of creativity, as a feature of
both natural and artificial intelligence, has a spotty history. Although creativity is an enormously
important aspect of our existence, few artificial intelligence (AI) studies have been directly aimed at
understanding the general underlying mechanisms of creativity. The field of AI has so far been focused
on logic as a foundation of intelligence, resulting in creativity often being considered a by-product
of logic. Creativity is, in short, generally perceived as the ability of an intelligent system to invent
things. Since one can invent important, impressive, idiotic and irrational things, it stands to reason
that creativity is not a Boolean feature, it comes in shades of gray. Where logic and intelligence go
together there is room for creative thought: Only with non-obvious, deep insight can the hardest
problems be solved. It is these types of insight that are generally referred to as “creative”.
Exploring cognitive mechanisms in animals is difficult for the simple fact that it is hard to elucidate
their cognitive processes. Complex processes underlying intelligence cannot be readily explored in
natural animals – and thus neither the evolution of the mechanisms involved. Artificial intelligence
presents an optional approach to gaining a detailed understanding of intelligence.
The original goal of this project was to explore ideas about the relationship between environments
with emergent properties and evolution of creative tendencies in species. This resulted in a series
of follow-on projects that included both experimental and software development efforts. One result
is the creation of a simulation platform for use in studying the relationship between evolution and
environmental complexity (each of the points are discussed in more detail in the appropriate sections
below):

• Cellular automatons as environments. Traditional explorations of agents in cellular automatons
have been carried out by having the cells themselves represent the agents (e.g. Conway’s Game of
Life [Berlekamp et al., 2001]). The approach taken in this project is to have cellular automatons
represent emergent environments for a close estimation of our own, real environment in which
organisms evolve. This approach is new, and cannot be found in similar research.

• Abstract cell architecture. The Vélaldin engine uses cellular automatons as a foundation for
producing emergence. The cells, however, are architectured in a unique way which allows them
to take virtually any form and features. We have named this design the Vélaldin Extended Cell
Architecture. Details on this framework are given in the Appendix.
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• Methods for measuring environmental complexity. By varying the rules and number of different
kinds of patches, the diversity of the environment can easily be measured since the variation of
patches and the number of their rules constitute the worlds complexity/diversity. This approach
is entirely new to complexity measurements, and to cellular automata research.

• Methods for measuring creativity. The methods of measuring creativity presented in this project
are based on the presented theory of creativity and offer a completely new approach to studying
and understanding the roots of creativity.

• Vélaldin Emergence Engine as a cognitive system. The abstract cell architecture of the Vélaldin
engine opens up possibilities of using the engine itself as a creative cognitive system. This
concept requires further exploration and is not detailed in this report.

Figure 1: Comparing creative constructs from animals to
those of humans. The human constructs on the right are per-
haps not considered prime examples of creative output, yet
are based on numerous creative insights without which they
would not exist. Compared to some of the structures con-
sidered very creative in the animal kingdom the difference in
creativity becomes obvious. Notice that the constructs on the
left are by two distinct species, the ones on the right by the
same one.

In this report we thus summarize our
work done to date that uses simulation
to explore the morphogenesis of cre-
ative behavior and the cognitive skills
underlying it [Thorisson, 2004]. To
this end we propose a formalization
of complexity, based on cellular au-
tomata, to compare the effects of evo-
lution on the cognitive skills of simu-
lated creatures whose cognitive capac-
ity for solving problems is controlled
by genetic algorithms. According to
the formalism, causal chains are repre-
sented with rules: A large world with
many possible states – both local and
global – is more complex than one
with few states and few causal mecha-
nisms. We have used this to compare
the emergent cognitive skills of simu-
lated creatures as a function of their
environment. The results so far in-
dicate a connection between the cog-
nitive skills associated with problem
solving chosen by evolution and the
complexity of the world.
This paper is organized as follows:
First we discuss the background for
this work, related research, and the hy-
potheses that we have proposed for the
relationship between creativity and en-
vironmental complexity. We then de-
scribe the world, the creatures we im-
plemented and the experimental setup. Finally, we present the results of two simulation runs. The
Appendix details the software platform developed for this work.

2 The Phenomenon of Creativity

In ultra high-dimensional problem spaces such as Earth’s nature, solutions to a vast majority of an
individual creature’s problems are non-obvious; to solve them requires some amount of creative behav-
ior, and creativity requires the coordination of a number of mental faculties. Runco’s [Runco, 2004]
review of creativity research covering the past 20 years mentions many processes studied in cognitive
sciences including memory, knowledge, attention, tactics, strategies, metacognition and many other
intellectual skills. It seems that creativity affects behavior to such a high degree that it is difficult
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to discern the difference between it and what we would (intuitively) call “intelligence” — the skills
needed to guide everyday behavior of animals in a natural environment. This would include for ex-
ample the skills that enable an animal to make plans for survival in a given environment. Considering
the high number of cognitive features that creativity has been associated with, it has been suggested
– and indeed seems likely – that creativity is not a specific (sub-)mechanism of the brain but rather
an aspect of human intelligence in general [Boden, 2004].
By 1988 over 50 different definitions of creativity had already been proposed ([Taylor, 1988]). A
common thread among many of them is a primary distinction between creativity displayed in an
artifact (e.g. poems, paintings, architecture, music) and processes that might result in a creative
product [Gero, 1996]. The characteristics of ”creative” artifacts are generally considered to be (1)
novelty, (2) unconventionality or unexpectedness, and (3) value of the product (value to whom re-
mains undefined). These have often been the pillars from which creative artifacts are evaluated (c.f.
[Boden, 2004], [Wiggins, 2006], [Gero, 1996], [Liu, 1996]).
Some attempts have been made to explain the origins of creativity in terms of evolution (most of which
are presented in relation to human creativity), and it has been suggested that exploring creativity’s
evolutionary roots might give us a holistic picture of how and why it emerges in relation to other
processes (c.f. [Gabora, 2005], [Thorisson, 2004]). Carruthers [Carruthers, 2002] has proposed that
the function of the extensive creative play of children, also evident in the behavior of other mam-
malians where the young engage in pretend-play such as hunting and fighting, is to train the young
in imaginative thinking for use in adult activities. Again we see attempts to explain creativity in the
context of mammals. If we could study creativity in simpler animals, even such as insects, perhaps
the pursuit would become easier.
Since evolution is responsible for producing all natural intelligence the same will be true of creative
behavior. The environment will have had an impact and may possibly have left an imprint – a
reflection of itself – in animals’ potential for creative behavior. Whether this is the case there are,
at the very least, reasons to believe that the nature of the environment for an evolving species will
have a tremendous effect on the evolution of the species’ behavioral repertoire; that it will to a large
extent be responsible for producing the potential for creative behavior in the species as a whole, and
expressed in each individual.
Our stance is that creativity is a necessary component of intelligent behavior, that in order to be
intelligent a system will necessarily harbour skills that we would categorize as ”creative”. The strong
view along this line of thought states that for a system to be intelligent it has to be creative – that
creativity is in fact as a necessary component of intelligence. Should one choose this view, the study
of creativity in nature is simply a different take on the study of natural intelligence.
Compared to other animals humans are cognitively complicated. However, our tendency to associate
creativity with (extraordinary) human abilities is undoubtedly too strong: If creativity is tightly
coupled with intelligence the notion must be entertained that creativity will also play a role in the
intelligence of simpler animals. This has proven to be the case. Beavers, birds and squirrels, for
example, have all shown a propensity for creating physical constructs. Going even further, crows have
exhibited an ability to for bend strings of wire into various shapes to use as tools for retrieving food
from places that are difficult to get to ([Weir and Kacelnik, 2006]). Research indicates that this is a
true skill — the crows did not solve problems by repeating previously learned patterns but rather by
generating new plans to solve each specific problem, using higher-level abstractions of the problem
space. When humans do this we refer to the behavior alternatively as “intelligent”, to some level,
or “creative”, to some level. If creativity is a phenomenon evident in all intelligences creativity’s
evolutionary roots must be tightly related to the evolution of planning mechanisms, e.g. as used by
the crow to retrieve food.
Despite simple nervous systems, insects apply different strategies to identify landmarks, detect ob-
jects, and plan courses of action. They are not mere reflex machines, but instead use memory, eval-
uation methods, and perceptual mechanisms, including the detection of geometric shapes and route-
segmentation, to function in their environment, depending on previous experience [Giurfa and Menzel, 1997]
[Collet and Collet, 2002]. Some might find it difficult to accept that insect behavior has anything to do
with creativity, and to our knowledge there have been no serious attempts to shed light on creativity
in terms of simpler animals than mammals. However, exploring the general concept of cognition in an-
imals lower in the phylogenetic tree has gained some attention in recent years [van Duijin et al., 2006].
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Godfrey-Smith [Godfrey-Smith, 2001] recently proposed that cognition evolved to cope with environ-
mental complexity, and Maturana and Varela [Maturana and Varela, 1973] introduced theories of the
origins of cognition with the concept of autopoiesis; a network of component-processes that perpetually
generate themselves.
In the following work we assume the following general definitions:
(i) Creativity is an agent’s ability to vary and adapt processes in order to fulfill its goals. Processes
can be internal (mental functions), or an externalization of internal processes (physical actions and
interactions with the environment), where an agent is a living or autopoietic agent, be it organic or
artificial. Creativity is a third-party’s judgement of the agent’s behavior in the context of its environ-
ment. Creativity can be exhibited by an agent without it explicitly understanding the environment
and without necessitating existence of internal goals in the agent.
(ii) Logicality is an organism’s ontogenetic ability to produce actions which are coherent with the
organism’s goals and structural organization of the environment. Environmental organization imposes
itself on organisms as they evolve and is reflected in logical behavior; insanity is the inverse of logicality,
resulting in behavior which is not relevant in the context in which they are realized, failing to fulfill
the agents’ goals and are consequently illogical or nonsensical. Creativity exists in the space between
that which is (easily and obviously) logically deducable and that which is truly random. No creativity
is without logic; randomness is not creative. According to our view, even basic logical behavior is
creative, only to a minimal extent.

3 Operationalizing Creativity

Goal-directed creativity as especially evident in humans is generally very hard to measure since it
is expressed in such highly diverse manners. By giving simulated creatures a single goal – that of
survival – new behaviors can be directly related to that particular goal, and hence, be operationalized
and measured as simply the longevity of the creatures. The number of distinct plans in memory at
the time of death, produced to fulfill that goal, can also be measured to further quantify creativity.
According to the hypothesis that creativity is governed by environmental diversity, creatures in com-
plex, rule-driven environments should evolve to become noticably more creative than those who evolve
in simple environments (as judged by the measure of creativity proposed above). Creatures who have
a goal to surive in a world will evolve abilities to make plans for survival: this could include, for
example, eating food and avoiding poison. If the world is simple and static enough the creatures will
evolve plan making mechanisms that produce plans of limited variability (perhaps only capable of
producing a single plan). For complex, dynamic worlds, however, the individuals will not be able to
produce standardized plans for every potential life-and-death situation. Instead of evolving simple
mechanisms focused on particular types of plans, and passing these on between generations, these
creatures will have an evolutionary pressure to evolve generalized l plan-making skills. For creatures
in dynamic worlds, repetitive behaviors are thus less likely to persist between generations. In other
words, creatures evolving in dynamic worlds will produce cognitive mechanisms able to exhibit more
creative behavior.

3.1 Environmental Complexity

Before we can define creativity we need to define the complexity of the environment, as this, ac-
cording to our model, is key to the development of creative behavior. We use a cellular automaton
([Wolfram, 2002]) to define the world of the creatures. Cellular automata (CA) are discrete, dynami-
cal systems which have been used frequently in research on artificial life (ALife). The term refers to
discrete dynamical systems in which patches or cells on a grid layout are given local rules to abide
([Wolfram, 2002]) – these rules provide instructions as to what state a cell should take depending on
its neighboring cells. Typically in such work the emergent organization of the cells themselves result
in agent-like behavior, i.e. the cells are programmed to organize themselves to form patterns which
behave like creatures [Anthony et al., 2004].1

1The work of Anthony et al. [Anthony et al., 2004], [Anthony et al., 1998] is a good example of these kinds of
artificial life simulations. In this prior work the lifeforms that emerge are fairly primitive – allowing a very limited
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By varying the rules and number of cell types/states in the CA, the diversity of the environment’s
behavior can be scaled in complexity: Increasing the number of possible cell states and ruleset results
in a wider range of possible patterns and variations. The combined cardinality of cell and rule types
controling their states can be used as a quantitative measure of a world’s diversity. As the rules are
explicitly represented we can thus quantify the complexity of different environments and compare
them in a consistent way. Formally, we define a single rule as:

rule := a set of conditions that can cause a cell state transition

As each rule, by this definition, represents a cell’s potential for interaction with other surrounding
cells, this can be used as the basis for an estimate of the behavioral complexity of a world: The worlds
complexity is quantified by cardinality of (a) the total number of (perceptually distinct) possible
cell states (C) and (b) the number of rules (R), using the above definition, that controls the state
transition of the cells. At this point we do not quantify the rule complexity (which could of course be
arbitrarily complex) but instead keep all rules at one or two IF-conditions at most.
We define a Complexity Quotient (Qc) for quantifying world complexity as:

Qc = RC (1)

where C represents the number of simultaneous cells perceivable by a creature and R the number
of rules pertaining to these cells. Qc represents a continuous scale of complexity, from simple to
complex. At the low end we have one rule and two possible and perceivable cell states (a single rule
would prevent cyclical transions); at the high end we have (apparent) noise.2 For our purposes the
interesting complexity level lies somewhere above 2 and below 20 – in this range one can easily see
that gradual increases in R and C gradually increase the visual complexity of the resulting patterns.
A more comprhensive version of forumula 1 would include the size of the area that enters into the
rules, i.e. the number of neighbouring cells whose states can enter into determining each cell’s next
state (N):

Qc2 = RCN (2)

This modification produces a somewhat more accurate estimate of the emergent complexity of the
world. Other improvements are certainly conceivable; however, these were not deemed necessary for
the purposes of the present work, and in fact our experiments were done using the simpler version of
this equation.

3.2 Plan Complexity

A series of logical decisions is what we typically call a “plan”. Before the decisions in such a plan
get executed they are “merely steps in a non-executed plan”, after they are executed they are part
of a fully or partially “implemented plan”. A plan which achieves its intended results is a good plan;
a plan which does this while being non-obvious (to produce and/or execute) is more “creative” than
one that is more obvious.3 In a world where a creature produces more offspring if it lives long has
an evolutionary bias for longevity; plan-making capabilities which enable creatures to live longers are
thus selected for. Longevity can thus be used as a measure of the goodness of the plans produced by
the creatures – and by extension their plan-making mechanisms. According to our view creativity is
not a binary or a semi-binary feature: Creativity is a continuum, where an increased ability to solve
problems is evidence of increased creativity. As plans become more complex they become less obvious
– the relative complexity of the plans made by a species, therefore, can be used as a measure of the
species’ creativity.

spectrum of association with higher functioning organisms. This is because most approaches limit the whole system to
a CA framework, explicit rules governing everything. The work presented here should not be confused with ALife work
based solely on CAs; our “agents” are not cells but rather fully-simulated creatures inhabiting a CA world.

2At the noise end there are, of course, underlying rules, as the changes would still be driven by the rules, but at
say 1 million rules we could probably not detect any regularity with standard methods of pattern detection such as
autocorrelation or other known pattern analysis methods.

3In this sense, how “creative” a plan is is certainly a relative concept.
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Daily usage of the concept of creativity does not typically involve a comparison between species but
rather a comparison of individuals of the same species. When we do this we typically use the results
of executed plans – artifacts – as the basis on which to make this comparison. However, equating
creativity with plans (or the results of executed plans) means that we have a basis to compare creative
potential between species. In our simulated creatures we have formalized this as the difference between
species evolved in worlds of varying complexity. Creativity is defined as the ability of the specie’s
creatures to make plans for survival. Meta-planning, i.e. the use of complex rules or mechanisms
to generate plans, can produce plans more creatively than e.g. a method that siply copies and/or
mutates old plans. A species where offspring inherit plan-making mechanisms has evolved more
creative planning mechanisms than one where offspring inherit a set of static or semi-static plans –
the plans themselves.

3.3 A Measure of Creativity

Given the above operationalizations of environmental complexity and plan complexity, the ratio be-
tween environmental complexity (Qc) and plan-making capability (Cp) is proposed as a definition of
creativity:

Mc =
Cp

Qc
(3)

where Mc is our measure for creativity. Since creativity is always relative to the complexity of
the task at hand, which is always bounded by the possible complexity of the world, we must take
the environment into consideration in measuring creativity. (The assumption here is that simple
environments do not need to – and thus will likely not – result in high levels of creativity.) The above
definition assumes that the creatures perceptual abilities are held constant; clearly a more complex
measure could be proposed where variable perception can be accomodated (see Discussion).
We operationalize plan-making capability Cp as the fraction of complex plan-making methods over
simple plan-making mechanisms:

Cp =
Pc

Ps
(4)

where Pc is the relative (and average) use of complex planning methods and Ps is the relative (and
average) use of simple planning methods.4 As the creature uses more complex methods for planning
Pc increases, as does the Creativity Measure Mc, for a constant-complexity world.

3.4 Hypotheses

All non-reactive animals (e.g. mammals) have mechanisms for dynamic planning. What we count
here as the basic “creative artifact” is a plan; more specifically, a plan for survival. Creativity’s roots,
according to this line of thought, derive from the interaction of the environmental structures and
their sub-parts: Unless the interactions of these structures are obvious to the organism (via some
fairly direct transformation of readily-available environmental patterns or signals), and thus easily
perceivable and relatively repetitive, evolution must provide creatures with a cognitive system capable
of producing diverse behavior in response to the diversity of the environment. As the unpredictability
of the environment increases – as the interactions between the causal chains in nature – become
so complex that causation is hidden from direct perception the creatures must evolve an ability to
mentally represent and link unobvious causations.
In our simulation, the agents evolve to learn to predict the environment. They do this by generating
random action plans to begin with, and over a lifetime, learn to associate the correct plans/actions to
the various perceptual stimuli. A more complex world has two major implications for the agents: The
diversity of perceptual stimuli greatly increases, meaning that the domain of plans with which the
agents can associate perceptual cues increases. Secondly, as the environment is not highly repetitive,

4We propose to measure the average plan method usage for the total individuals in the Xth generation that is chosen
for measurements.
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the agents must produce behavior to meet this diversity, exctracting the invariants, yet classifying
them and grouping them such that different different problems call up different plans and produce
different behaviors. With respect to this relationship between the environment and plans it can be said
that the plans reflect the architecture of the environment. Over time, evolution provides the agents
with mechanisms to produce plans (without evolution having direct control over the plans themselves).
Over the lifetime of a species, therefore, these mechanisms become increasingly fine-tuned to match
the specific circumstance and reflect the environment more accurately. If the plans are not coherent
with the specific circumstance they are selected and executed in they fail to comply with the agent’s
goals and are therefore illogical or irrational. It can consequently be stated that logic and rationality
is bound in the coherence of the plans (behavior) and the goals (or environmental conditions) that
the plans are intended to fulfill.
Our background hypothesis in this work is thus that

the evolution of mechanisms behind creativity are directly related to the complexity/diversity
of an emergent environment: The co-evolution of creativity and external environmental logic
could result in internal “visualizations” (imagination) that arrange components and structures
corresponding to the structural “rules” of the environment.

From an evolutionary perspective it can be assumed that, with increased complexity, natural organisms
evolve more advanced methods of prediction, allowing them to represent structures internally and
simulate or imagine environmental events. An internal representation of an emergent structure enables
a deeper understanding of that structure, and hence, a more accurate prediction and increased chance
of survival. Understanding can be equated with that of explanation ([Baas and Emmeche, 1997]).
To be useful these simply have to produce a prediction that then can be verified or falsified by the
creature via its actions in the world. Over time the predictions start to more closely match reality,
and we say that the creature has learned to “understand how the world works.” Nevertheless, in order
to continue to be equipped to expand its mind to a wide array of phenomena, the creature’s mind
needs to continue to be “imaginative” – otherwise the creature’s mind would become increasingly less
capable of adapting to new situations and contexts. We thus theorize that

creativity is evolutions answer to perceptually apparent unpredictability: As a particular
perceptually recognizable pattern is presented, the creature comes up with “stories” about how
this pattern can be“disected” – and subsequently tests these stories, to see if the disection
hypothesis holds up.

As the creature gains in experience it collects evidence about how particular disections – essentially
models of causal chains – relate to certain patterns; these causal chain models then become increasingly
more easily and directly evoked as the creature gains more experience and the context-model pairings
become more robust. One way to see this is that the causal models that once were “wild fantasy” in a
creature’s head become “reality” with experience. Perceptual unpredictability is different from some
hypothetical or “actual” unpredictability - the discussion here revolves around predictability from the
standpoint of a situated individual creature, perceiving the world in particular circumstances, via its
particular perceptual apparati and cognitive faculties: As it is an individual’s probability of survival
that determines its chances of producing offspring, it therfore also determines a species’ chances of
survival.

We assume that the complexity of the environment and an organisms ability to perceive
environment are equally important aspects of the evolution process of a species,
since varying complexity of the environment will make no difference if the members
of the species are unable to perceive the variation.

Given creatures with different kinds of planning mechanisms, the complexity of the planning should
vary with the complexity of the world that the creatures evolve in: Given a relatively high Qc (i.e.
worlds with more complex underlying rules) we should see more reliance on complex planning methods;
lower Qc-worlds should see lower Pc and higher Ps; i.e. given a set of plan-making capabilities, Cp,
the simpler ones will suffice for simpler worlds and more complex ones will be required for survival in
more complex worlds.
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4 World Implementation

Our worlds are thus a 2-D cellular automata where the cells – or patches – represent physical phe-
nomena such as grass and rocks. The rules are evaluated and the whole world is reset per cycle, upon
which the state of a patch could change; for example, grass grows and dies according to preset rules
of interaction between patches. An important aspect of using cellular automata in this work is that
the patterns expressed by the creatures’ environment are based on regularities controlled by explicit
underlying rules. Even though the rules for each type of patch are unknown to an observer that
inhabits the world all regularities in the environment’s behavior are the result of interaction between
rule-based patches, completely deterministic, and a part of this regularity is visually inspectable at
any point in time by the creatures’ sensors. Using as few as five or six rules can nontheless produce
relatively complex environmental behavior without losing the determinism and logical results in terms
of the world’s overall behavior. Rule examples used in the following experiments can be found in
Table 1.
While the modification introduced in equation 2 (above) produces a somewhat more accurate estimate
of the emergent complexity of the world than equation 1, in the present experiments we are only
comparing three fairly distinct levels of compleixty and the difference in accuracy does not matter for
the questions under consideration. We therefore use formula 1 in the following experiments.

Simple World (Es) Qc = 18 Complex World (Ec) Qc = 91

• If EATEN: turn BROWN

• If GREEN and green
patches around > 20
and lifetime > 30: turn
BROWN.

• If GREEN and green
patches around < 12
and lifetime > 20: turn
BROWN.

• If GREEN and number of
green patches around =
25, turn BROWN.

• If GREEN and lifetime
under any circumstance >
60: turn BROWN.

• If BROWN and green
patches around > 8 and
their lifetime combined
¿ 80 and brown patches
around > 10: turn
GREEN.

• If GREEN and lifetime >
53: turn DARKBROWN.

• If EATEN: turn BROWN

• If RED and lifetime > 15: turn BROWN.

• If GREEN and green patches around > 23 and lifetimes
> 30: turn MAGENTA.

• If GREEN and green patches around < 12 and lifetime >
20: turn BROWN.

• If GREEN and red patches around > 6: turn RED.

• If MAGENTA and lifetime > 30: turn YELLOW.

• If MAGENTA and lifetime < 30 and brown patches
around > 19: turn GREEN.

• If BROWN and green patches around > 6 and brown
patches > 10 and their combined lifetime > 25: turn
GREEN.

• If DARKBROWN and magenta patches around > 4: turn
YELLOW.

• If DARKBROWN and green patches > 6 and dark brown
patches around > 4: turn RED.

• If YELLOW and lifetime > 30: turn MAGENTA.

• If YELLOW and lifetime < 50 and magenta patches
around > 8: turn BROWN.

• If YELLOW and lifetime > 70 and brown patches around
> 19: turn GREEN.

Table 1: Rules of the example worlds shown in Figures 4a and 4b, Simple (Es), and Complex (Ec),
respectively.
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Figure 2: Creature components.

5 Creatures

According to our thesis, complexity of the environment and an organisms ability to perceive the
environment are equally important aspects of the evolution process of the individual, since varying
complexity of the environment will make no difference if a creature is unable to perceive the variation.
Further, an ability to perceive is tied to an ability to make use of that perception: If motor control
cannot produce the needed behavior to respond to perceptual events in a way that is useful for
the individual then of course the perception is useless to that individual; therefore, to some extent
perception must co-evolve with motor planning and control. We assume that such co-evolution has a
primary relation to time-sensitive planning abilities, as vision constitutes a significant proportion of
information reception in most mammals.
The artificial species is designed to bear a resemblance to natural insects found on Earth, based on the
research of Collet and Collet ([Collet and Collet, 2002]). The simulation of insect memory and navi-
gational abilities has been attempted before using a physical LEGO robot ([Chan and Wyeth, 1999]).
The authors showed a method for reducing the degree of prior knowledge required about the environ-
ment, compared to other more classical approaches. The learning method they used was comparable
to the one proposed here: Insects associate visual cues with their plans to navigate to and from nest
and food sources. However, the method for associative learning and cognitive apparatus used here is
a greatly simplified version of the one applied in the LEGO robot.
In this framework a creature has a body comprising a vision system, mobility, a mouth for feeding
and a mental apparatus. A memory system provides the basis for forming repeatable plans that
enable them to interact with their environment. The cognitive mechanisms are divided into parts as
described in the next sections. The parts of the creature are:

1. Perception Cortex

2. Decision Cortex

3. Episodic Memory

4. Genetic System

5. Plan Composer

6. Motor Cortex

7. Digestive System

We will now look at two examples of how components in a creature could be implemented. These are
not part of the platform itself but rather are described here to give an idea of the level of complexity
and functionality of these key components.

5.1 Episodic Memory

The Episodic Memory is the storage area for all perceptual input, the creature’s actions and the
consequences of those actions. In my example, memories are stored in the form of chunks which
integrate these various components together into a package. The packages include a particular visual
field, the plan that was associated with the perceptual input, the score - in particular the energy
expenditure which was registered during the execution of the plan, along with a normalized plan
score.
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During each step, the Decision Cortex sends a message to the Episodic Memory to find all memories
that the creature might have of similar situations.
The procedure is as follows:
Find all similar memories by first rating them along three semi-independent feature dimensions:
1. Image Matching (dimension one). The visual field in general: Compare each patch of the current
visual field to each patch of a particular memory M . Similarity scoring is incremented with each
patch that corresponds precisely to a patch in the precisely same location in memory M , based on
the creature’s coordinates (thus, if a patch in the upper left-hand corner is green, and the upper-left
hand patch in memory M is green, the memory gets a point for similarity). This score is normalized,
so the increment for each patch that’s identical is 1 divided by the total number of patches in the
visual field. The final score is the sum of all identical patches.
2. Dominant Zone Similarity (dimension two): Compare the current visual fields dominant color and
the zone the dominant color is mostly evident in to all memories. The score is normalized, but is
either on or off (i.e. 1.0 or 0.0).
3. Patch in Front of Mouth (dimension three): Compare the patch in front of the creature’s mouth
to that same patch in all existing memories. This is similar to the Zone Similarity scoring – if the
current patch in front of the mouth corresponds to that same patch in a memory, the similarity is
turned on (again, 1.0 or 0.0).
For each of these features, the memories are arranged in descending order according to each feature’s
similarity score. The plan associated with each memory (there is either a plan or a ”primitive move”
associated with each memory) is retrieved for the top three memories – one for each dimension.
Plan scores are normalized by

Sf =
1

Sp(SmaxSmin)
(5)

where Sf is final score, Sp is plan score, Smax is the maximum score of any plan retrieved from
memory, and Smin is the minimum score for any pLan retrieved from memory.
The normalized plan scores of memories in the sorted dimensional arrays are multiplied by the simi-
larity measurement of the memories, providing a “winner” which then determines which plan is used.

5.2 Genetic System

Following the terminology introduced by Holland ([Holland, 1998]), covering natural and artificial
adaptive systems, a gene is denoted A, composed of set of alleles is A = {a1, a2, ...an}. In the example
in this paper, A denotes a unique component within the genetic structure to which genetic operators,
Ω, are applied. In our work these structures are implemented as “control boxes”. Here the structures
corresponding to Holland’s alleles are connections between these control boxes. The combinations
of control boxes and their connections are defined by the adaptive plan τ which uses the genetic
operators (e.g. mutation, crossover, etc.). The criterion for comparison of τ will is denoted as µ; the
measurement when comparing adaptive plans is the age a creature reaches by the use of a particular
adaptive plan. The set of structures attainable by the adaptive plan can represented by the following
equation:

a = A1 ×A2 × ...An = Πn
i =1Ai (6)

Since the environment, E, selects over time which control boxes survive between generations, an
evolving, adaptive plan is defined over time by a particular environment E.
The Gene Manager is the part of the program that gets passed on and mutated between generations
by genetic operators (χ); it holds the creature genome which constitutes a set of control boxes and the
connections between them, these two components constitute the Control Network. The control boxes
consist of two inputs I1 and I2, an output O and an operator which determines what to do with the
inputs received. There are no initial connections between control boxes for the first generation in all
worlds, and the initial outputs of Static Boxes are set to zero. After the first generation, all settings
of control boxes and their connections are changed by mutation.
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The types of boxes in the Control Network are:

Static Box: fixed output - a constant.

NOR box: returns 1 if both inputs are zero.

NAND box: returns 1 either inputs receive numbers but not both.

Input Gate Box: I1 IFF I2 > 0.

5.3 Control Network

Each of the boxes serves as a node in a Control Network. Outputs from the boxes are connected
to none, some or all of the other box inputs. This is implemented by using a matrix to represent
the outputs and inputs of all of the boxes (Static Box inputs excluded). The exact routing of the
control box inputs and outputs is determined entirely during reproduction of the creatures. That
is, the creatures’ genetic configuration is responsible for using received inputs efficiently for plan
composition.
For each box, a total of 4 possible connection configurations are possible. Given an example setting
of 39 boxes that each can receive two inputs (static boxes have no input) and provide one output, the
number of possible connection structures attainable by the network are 439.5

Figure 3: Control Network. Output flows from the bottom
of the boxes into none, some or all inputs of the other boxes
(except for Static Boxes, see text). Boxes can connect to
themselves. (G: Static Box, D = NOR Box, L = NAND and
Input Gate Boxes, I = inputs from perception and internal
state, PC = Plan Composer, P = plans.)

On every step during execution the
Control Network receives a request
from the Decision Cortex for updating
its outputs. The outputs feed into the
Plan Composer and set control param-
eters as the creature decides how to
plan its actions. There are five main
ways for planning the next step, as ex-
plained in the next section.

5.4 Plan Composer

The Plan Composer receives instruc-
tions from the Control Network dur-
ing each turn regarding what to do and
specifically how to do it. The instruc-
tions are in the form of integers that
are deciphered by simple logic gates
applied to the Control Network inputs
in the Plan Composer.
The methods that the Plan Composer
can use to create the next plan include:

a. Create a new plan from scratch.

b. Combine halves of two old plans.

c. Sequenced composition (combine two

whole plans , executed in sequence ).

d. Mutate an old plan (randomly change

primitive actions of an older plan).

e. Use an old plan unmodified.

When creating a new plan from scratch, the Plan Composer randomly selects the length of the plan
and how many instances of each primitive action are to reside in it. With random distributions of
actions, the other four methods become very important since they provide a much more controllable
way of making sensible plans. Also, by using combine and mutate, the individual development will
become more evident as the creature is bound to use the methods on plans that have provided good
results.

5An interesting question is the relationship between the this number and the minimum number of generations required
to develop sustained existence. An even more interesting question is the relationship between the complexity of the
world and the size of the Control Network.
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(a) Simple Static/Dynamic, QC=3/9 (b) Complex Dynamic, QC=18

Figure 4: Cellular automata worlds of varying complexity.

6 Experiments

A number of unique worlds were proposed as a testing ground, two of which can be seen in Figures
4a and 4b. To make worlds comparable on the measure of how world diversity affects the creatures’
plan composition an appropriate balance between the quantity of food in each type of world must be
kept. This will ensure that environmental niches ([Holland, 1998]) are kept at a minimum, giving the
different worlds equality in everything besides diversity.
In the experiment we use three versions of the world. Simple (Es), which is made up of stripes
alternating green and gray (Figure 4a). Green is grass (food), gray is rock and brown is mud (if the
creature eats a green cell, the cell turns brown). Es has Qc = 3. Simple Dynamic (Esd) is the same
as Es with the seemingly small change that the stripes change regularly from gray to green and green
to gray, increasing the worlds Qc to 9. Update frequency of Esd is every 50 steps. Both Es and Esd
reset for each new individual. The third world, Complex Dynamic (Ecd) presents more landscape-like
structures; Qc = 18 in Ecd (Figure 4b). Ecd begins with initial random placement of cells, but is
updated 500 times to eliminate the initial randomness before creatures are introduced to the world.
Each generation is made up of 100 creatures (Ng = 100), natural selection is implemented by sorting
the creatures according to age; the top ten individuals (C1, C2 ... C10) are selected as the basis
for the next generation. The selection criteria for inheritance, µ, is the creatures age reached. The
creatures only goal is to survive. Having a single goal simplifies comparison between the different
worlds and plans. Because the creatures only have one goal, all plans that the creature creates are
geared towards reaching that goal. And thus, coming up with alternative plans for reaching a goal is
a form of creativity.

7 Results and Interpretation

The results show a high similarity between simple (Es) and simple dynamic (Esd) environments in the
creatures planning behavior. In both environments the creatures used all of their available mechanisms
for plan creation (Create-new-plan from scratch, Mutate-old-plan and Combine-old-plans). Figures 5
and 6 show the average use of the 3 mechanisms for plan creation over the lifetime of the creatures
in each of the 100 generations (see section on creatures for details about the mechanisms). While the
creatures are producing new plans from scratch relatively often, they compensate for plan randomness
by using the other mechanisms. The creatures evolving within these simple worlds are maintaining a
balance between innovation and logic: creating new and untried plans as well as learning from their
previous experiences by using and combining plans that have proven efficient and useful.
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Figure 5: Simple (static) Environment (Es). Average use of cre-
ate new plan (circles, purple), mutate old plan (boxes, blue) and
combine old plans (triangles, green) X-Axis: generation; Y-Axis:
average use of planning method.

Figure 6: Simple Dynamic Environment (Esd). Average use of
Create-new-plan (circles, purple), Mutate-old-plan (boxes, blue)
and Combine-old-plans (triangles, green) X-Axis: generation 10-
100; Y-Axis: average use of planning method.

In terms of our hypotheses, it would
not have been surprising to see more
difference in the results of the two
worlds. Looking at the two sim-
ple worlds only, the main hypothe-
sis, that an increase in environmen-
tal diversity results in a larger set
of plans, is not clearly supported or
disproved. This similarity might be
due to structural likenesses between
the two worlds. When compared to
the results from the Complex Dynamic
World (Ecd), however, the hypothesis
is clearly supported. Figure 8 shows
the average use of the plan-making
mechanisms over the 100 generations.
With Qc = 18, the creatures resorted
to using the creation mechanism (cre-
ating a new plan from scratch every
turn), while leaving the other mecha-
nisms relatively unused. The plans and behavior of the creatures was therefore very diverse but the
lack of learning from previous experiences resulted in their plans maintaining no logicality.6 The
creatures had shorter lifespans in more complex worlds and could therefore not use the plan-making
mechanisms as often. In Es the creatures’ average age reached is 28; in Esd it is 25, and in Ecd it is
21.
Figure 5 shows an example of how the creatures’ plan maintains logicality by eating only the food
(green) while skipping the rock-lines (gray) which, if eaten, result in a substantial loss of energy.
Similarly, 6 shows a creature having turned to eat a row of food in a consecutive manner. Such
behavior would not have been possible were it not for the fact that the creatures in Es and Esd were
using the mechanisms that build on previous experience. In the Ecd (Complex Dynamic Environment),
the creatures showed little logicality in their behavior due to their frequent usage of the random plan-
making mechanism (Figure 7 shows a creature within the Ecd). To find food in Ecd is not as simple
as finding food in Es and Esd the agents have to produce behavior that allows them to cope with the
complexity of their environment. The agents work relatively mechanically in Es and Esd because the
visual cues are few and provide accurate accounts of what will happen if the agents execute a certain
plan. If the agents encounter a gray cell-structure (a stripe) in Es, they can depend on the fact that

6Note that we speak of logicality and not of efficiency, as plans can potentially be logical but still inefficient.
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b

Figure 7: Complex Dynamic Environment (Ecd). Average use of Create-new-plan (circles, purple), Mutate-
old-plan (boxes, blue) and Combine-old-plans (triangles, green) X-Axis: generation; Y-Axis: average use of
method per generation.

if they use the plan move forward once, then eat they will gain energy, as the cell they will eat is
guaranteed to be green (food). However, in Ecd, the green structures’ behavior is much more diverse,
and hence harder to predict.
In summary, the results strongly suggest that creativity is governed by environmental complexity, and
that structural coherence dictates logicality of produced plans. Particularly, agents whose cognitive
system evolve in overly complex worlds tend to create diverse (random) plans, but simple ones impose
plans that maintain novelty and diversity without venturing into randomness supporting the stated
hypothesis.

8 Future Work

The present results are clearly indicative that the evolution of planning mechanisms – and thus the
creatures’ understanding/modeling of the environment – is influenced by environmental complexity.
However, as graphs 6 and 7 indicate, there is clearly more to the story. The causal relationship between
environment and the evolution of creative mechanisms in creatures needs to be studied further to reveal
its robustness under varying conditions, its precise relationship with complexity as opposed to other
factors (e.g. dynamics). This can be done by testing more variations of environments, as well as more
variations on the creatures’ cognitive makeup. Moreover, our particular measure of complexity needs
to be investigated to reveal its ability to predict variations in the evolution of cognitive capabilities,
in particular planning and creativity, as defined here. The usefulness of our complexity measure in
alternative settings should also be investigated, e.g. by trying to map non-CA worlds to CA-type
rules. Lastly, the relationship between randomness, complexity, creativity and logicality should be
further studied, to map out the full scope of these concepts and how they relate to each other.
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9 Appendix: The Vélaldin Engine

The software we have developed is called the Vélaldin. The software can produce emergent envi-
ronments based on cellular automata framework, and allows externally-developed agents to traverse
these environments. The software also includes artificially intelligent agents capable of sensing and
acting within these emergent worlds. We have also implemented methods for gathering statistical
information from the environment and the agents.
The software is quite flexible and allows alternative setups of experiments than the ones we discuss
here. The platform is developed on Sun Microsystem’s Java programming language, making the
Vélaldin software capable of running on the major computer operating system (MacOS, Windows,
Linux).
The architecture of Vélaldin contains multiple features, some of which are completely unique in com-
parison to similar software architectures. The features of Vélaldin include means to:

• (i) Create 1D, 2D and 3D worlds through a single interface

• (ii) Maintain an abstract and open representations of cells

• (iii) Allow software agents to sense and act within Vélaldin’s universes

• (iv) Gather statistical information about the universes through simple means

• (v) In addition to the above features, the system can do everything that a conventional cellular
automaton simulator is capable of.

The Vélaldin Engine facilitates the creation of 1D, 2D and 3D worlds composed of cell-like objects,
which are updated in discrete time steps. The cells determine their next state through use of rules
they carry internally and govern their behavior in accordance to the state of their neighboring cells.
This format of cell-composed worlds is known as cellular automatons. A Vélaldin cell can be defined
as:

cell = s, r, n|s ∈ S, r ⊆ R,n ⊆ N (7)

where s is a state from the set of possible states the cell can take on, r is the set of rules that govern
the cell and n is the set of the cell’s neighbors (other cells). All of which, except for the current state,
are subsets of the superset of available States, Rules and Neighbors (capital letters). See xxx for a
graphical representation of a cell.

Figure 8: Graphical representation of a
cell in Vélaldin.

It follows that a statechange of a cell can be defined as
a function f, which maps a cell’s current state, rules, and
neighbors to a new state:

f : s, r, n→ S (8)

Vélaldin takes this format of cellular automatons to a new
level by introducing the concept of abstract cell represen-
tation, that is, within Vélaldin a state, a rule and a cell
can be virtually anything the developer/user can imagine.
To explain further: while a conventional CA state might
for example be a type of color, the Vélaldin architecture
makes no distinction between whether the state is a color,
an alphabetical letter, 500 pages of text, or something com-
pletely different. The same applies to rules and the gen-
eral cell architecture. The only requirements made by the

Vélaldin Engine is that a state is something that can be computationally represented, and a rule is
something capable of instructing the cell what to under particular circumstances. We have dubbed
this abstract-architecture the Vélaldin Extended Cell Architecture, or V ECA. VECA is the compo-
nent responsible for referring to Vélaldin as an “emergence engine”. In addition to the mentioned
features of VECA, the architecture also allows for rules and states to exist independently, meaning
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that it’s possible to construct cells that generate new rules or states, opening up new dimensions for
experimentation with emergence. This does not only allow conventional cellular automatons to be
run but can produce an emergent effect with anything that fulfills the aforementioned requirements
(see more on VECA in the Vélaldin Manual).

Figure 9: Vélaldin Cocoon
connectivity (only some of the
connections are shown, for
simplicity).

The cells within Vélaldin are represented as a matrix, each cell con-
nected to its neighbors at runtime to allow neighbor-checks. The
matrix of cells is contained in cell-placeholders called Cocoons at any
given time during simulation. A Cocoon stores cells and is responsible
for collecting neighbors and passing them to each cell. Together the
cocoons represent the actual matrix of any Vélaldin simulation, be-
ing linked to each other via references to their immediate neighboring
cocoons. This architecture adds a new layer of flexibility to cellular
automaton simulations. Two examples are that cells can move from
one position to another7 and cocoons that serve as cell-observers (no-
tifying the user or system when a certain cell appears at a certain
position, for example).
Gathering statistical data at Vélaldin runtime is easy due to yet an-
other architectural feature. We created a specific object, a Morpher,
whose sole purpose is to update the worlds created with Vélaldin.
During each update of a particular world, the Morpher object iter-
ates through the Universes list of cocoons and call for each cell to
morph according to his specified set of rules, and the states of his
neighbors. This implementation gives the user an ability to collect
information from the world instantaneously, such as state changes or counting the number of a certain
type of cells currently available. A basic implementation of a Morpher is provided in this first re-
lease of Vélaldin which exemplifies it’s usage and fulfills the requirements for basic cellular automaton
simulations.

Figure 10: The Synchronous morphing process in the Vélaldin
Engine.

Another benefit of the Morpher archi-
tecture is efficient synchronized updat-
ing of cells. Cells in a conventional cel-
lular automaton update synchronously
(all change state at the same time).
For this to be possible, a state change
can not be allowed to occur until all of
the cells have been allowed to decide
their next state. (If this were not so
each cell might potentially be looking
at their neighbors future state instead
of their current state.) A standard
method of solving synchronicity is to
maintain a duplicate universe in mem-
ory which is kept unchanged while the
cells update, the neighbors of each cell
being fetched from the duplicate and

not from the actual universe (which might contain new states). As two worlds have to be maintained
at all times, this method is memory consuming. In Vélaldin this problem was solved through an algo-
rithm in a Morpher: If a cell’s rules dictate a state change, the cell does not change state immediately.
Instead, the new state is stored in a temporary list in the Morpher. When the Morpher has completed
morphing the whole Universe of cells, the list of changed states is returned to the CellMatrix which,
in turn, applies the new states to the cells. This solution requires no duplicate universe, and only has
to maintain a list of changed states. It can be added that should the user of Vélaldin so wish, they
can set the system up to allow cells to update asynchronously. The CellMatrix also allows external
processes to access the cell content and states, such as when simulated agents can perceive and affect
cell states through their actions.

7In contrast, in standard cellular automatons the cells do not move and the only changes allowed are state changes.
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