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Abstract
An  increase  in  systems  integration,  for  example  in 
humanoid  robotics  and  intelligent  environments,  has 
called  for  better  solutions  to  support  multi-module 
integration.  Blackboards  can  simplify  construction  of 
systems  with  large  numbers  of  heterogeneous 
components  requiring  a  high  number  of  fine-grained 
interactions.  In  this  paper  we  describe  the  use  of  a 
scheduling  blackboard  used  for  developing  interactive 
robots.  Our  blackboards  both  simplify  and  extend  the 
blackboard  model  in  a  number  of  ways.  Chief  among 
them  are:  An  explicit  temporal  model;  quality  of 
service;  publish-subscribe;  queries;  discrete messaging; 
streaming  data;  programming  language  independence; 
as well as a number  of solutions to practical  issues  for 
improving development effort and runtime performance. 
Whiteboards  present  a  compelling  case  for  the  use  of 
scheduling  blackboards   in  robotics,  where  multiple 
functionalities  and modules need to be integrated into a 
coherent whole. 

Introduction 
Blackboards  (Selfridge  1959,  Englemore  1986,  Adler 
1992)  have  proven  a  useful  construct  in  A.I.  for 
facilitating  interaction  between  heterogeneous 
components  with  complex  run-time  behaviors.  The 
principal  idea  behind  blackboards  is  modularity:  A 
problem space is broken up into problem areas, each of 
which has its own component or “expert” working on it, 
communicating  with  experts  in  other  areas  via  the 
blackboard,  posting  information  to  it  and  reading 
information from it. Blackboards are thus a general way 
of  enabling  multiple  logical  modules  to  exchange 
information in environments with unpredictable events.
Many  issues  are  hindering  progress  in  A.I.;  lack  of 
computing  power  ranks  high  among  them.  Another  is 
the  lack  of  powerful  development  tools  and 
methodologies  that  help  coordinate  efforts  between 
researchers and groups: attempting to build human-level 
intelligence without  either  is  bound to  fail.  The  basic 
tools  need  to  enable  integration  yet  cannot  make  too 
many assumptions about how they are to be used. Past 
efforts  to  provide  general-purpose  blackboards  have 
failed in part because their complexity was too high. 
Modularity is a prime candidate as viable methodology 

when it  comes to building  large systems that  integrate 
sensing,  planning,  language  and  action.  Recent 
examples  have  confirmed  the  notion  that  modular 
approaches  speed  up  the  development  of  complex 
systems  (cf.  Simmons  et  al.  2003,  Bischoff  2000, 
Martinho  et  al.  2000).  They  have  also  proven  to 
facilitate  the  collaborations  of  large  teams  of 
researchers  (e.g.  Fink  et  al.  1996,  1995).  Modularity 
played  a  large  role  in  the  construction  of  successful 
robotic systems such as Bischoff et al.'s HERMES robot 
(2000)  and  Simmons  et  al.’s  robot  Grace  (2003),  the 
latter of which involved  the work of 5 institutions and 
over  20  people.  Martinho  et  al.  (2000)  describe  an 
architecture  designed  to  facilitate  modular,  rapid 
development of theatrical agents in virtual worlds. As in 
many  other  similar  systems,  their  approach  involves 
splitting the processing into separate modules,  each of 
which can be developed somewhat independently of the 
others.  This  enables parallel  implementation,  reducing 
development  time.  Subsequently combining the  pieces 
to form a full system becomes a simpler task. 
Message  passing  also  facilitates  the  construction  of 
modular  systems.  Maxwell  et  al.  (2001)  used  a 
message-passing  architecture  with  central  memory  to 
facilitate  modular  integration  of  several  key 
technologies needed for constructing interactive robots. 
Their  robots  have  sophisticated  vision,  planning  and 
navigation  routines,  speech  recognition,  speech 
synthesis,  and  facial  expression.  With  10 
undergraduates  working  on  the  project  for  8  weeks, 
constructing three  different  robots  with  these  features, 
the  application  of  blackboards  or  message-based 
architecture to such problems is given strong support. 
While  the  above  examples  show  the  promise  of 
blackboard  architectures,  it  is  important  to  note  that 
none  of  them  explicitly  employ  blackboards.  We 
believe  this  is  because  most  blackboards  have 
historically  been  designed  and  used  exclusively  for 
discrete messaging.  For robotics,  computer  vision and 
hearing,  an  important  requirement  is  that  both 
streaming and atomic data types be directly supported. 
Computer  vision,  for  example,  may  require  several 
stages of a video stream, each one being the result of a 
particular  type  of  processing.  The  integration  with 
discrete data types is also a necessity if decisions, which 
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are  discrete by nature,  have  to  be  made  based  on the 
visual  processing.  Such  systems  can  become  quite 
complex, especially during their development stages. It 
is  therefore  critical  that  the  development  framework 
support  easy  integration  of  the  two.  However,  it  is 
conceptually very difficult to meet this requirement. An 
ideal system would make it possible to freely mix data 
types  together  during  the  development  of  a  systems 
without  introducing undue runtime  overhead,  complex 
architecture or difficulties in use. For example, it is not 
uncommon  that  modifications  of  a  computer  vision 
system under development  require frequent  changes  in 
the  flow and stages  of  video  streams,  mixing  discrete 
events  into  the  processing  and  enabling  event-driven 
processing of streams.
A  recent  A.I.  Magazine  article  about  the  annual 
RoboCup  competition  (Pagello et  al.  2004)  states  that 
integration is “one of the biggest challenges remaining” 
in  the  field.   An  increased  interest  in  systems 
integration,  for  example  in  humanoid  robotics  and 
interactive environments,  is calling for better solutions 
in support for integration.
With roots dating back to the early days of A.I. and the 
bulk  of  work  done  in  the  80s,  it  may  seem  a  step 
backward  to  revisit  the  blackboard  idea.  However, 
current practice indicates otherwise. With an eye to the 
present state and recent  developments in the field,  this 
paper  describes  a  type  of  blackboard  called  a 
whiteboard1 that  retains  the  benefits  of  blackboards 
already mentioned but addresses the above deficiencies 
using  ideas  from  network  routing  and  semantic  web 
technologies.  Rather than making detailed assumptions 
about  the  nature  of  their  usage  in  A.I.,  whiteboards 
impose  only  very  general  design  principles  on  the 
systems they are used in and assume a generic modular 
software development methodology. Multiple operating 
systems,  programming languages and the  proliferation 
of cheap computers and networks, makes the need for a 
general approach to integration of distributed systems in 
A.I.  more  important  than  ever.  Whiteboards  try  to 
exploit this opportunity and answer the need for basic 
data  exchange  mechanisms,  while  being  sufficiently 
powerful for use in complex integration projects.
We will  begin with a review of related work and then 
describe the main features and benefits of whiteboards.

Related Work
The  history  of  blackboards  goes  back  to  Selfridge’s 
Pandemonium  system  (1959).  Since  then  a  host  of 
systems have been built around the concept of agents or 
daemons  with  a  shared  memory,  with  significant 
advances being made in the mid- and late 1980s (Adler 
1992).  The  agents  in  blackboard  systems  have  been 
referred  to  by  various  terms,  including  “knowledge 
sources”,  “daemons”  and  “experts”,  the  terms  chosen 
being  related to their  intended role  in their  respective 
systems. 
A number of past systems were focused on mechanisms 
and representations particular  to specific domains.  For 

1 Whiteboards are so called because they are the modern descendant  of 
blackboards.

example,  HEARSAY-II (Erman  1980),  one  of  the 
earliest  blackboard  systems,  was  specifically  built  for 
speech recognition.  GBB (Corkill et al.  1987) provides 
general  mechanisms  data  passing  and  module 
triggering, but goes to great  lengths to provide support 
for spatial representations and data handling. 
Recently a revived interest in agent-based architectures 
has  lead  to  a  focus  on  distributed  systems.  Several 
notable  projects  have  been  started  in  recent  years 
focusing  on agent-based  communication,  among  them 
KQML2 (Knowledge  Query  and  Markup  Language) 
(Mayfield et al. 1995) and there have been more recent 
efforts related to grid computing.3 Distributed systems 
share  many  features  with  blackboards,  though  with 
notable  exceptions.  One  of  the  differences  is  that  in 
systems with distributed agents the agents know much 
more  about  basic  communication  than  the  experts  in 
older  blackboard systems.  This  means  that  distributed 
agents are in less obvious need of the “smart  routing” 
that  scheduling  blackboards  provide.  These  can  be 
classified  into  object-oriented  and  message-oriented 
approaches.

Object-Orientation
CORBA4 is a relatively general  technology that allows 
transparent  communication  between  programs  running 
on  multiple  computers  that  are  written  in  different 
languages. CORBA takes the object-oriented approach: 
An  object  makes  a  request  for  a  service  or  for 
information,  and this  request  is  brokered by a  central 
server, simulating an extended function call, or Remote 
Method  Invocation  (RMI).  Java  has  a  similar  facility 
built-in, for bridging between separate Java programs.
The RMI mechanism works well  for systems that  can 
assume a larger temporal granularity  than  the network 
can provide.  In many real-time  systems,  however,  this 
assumption is insufficient:  The clock of the real  world 
keeps ticking  on with no regard for delays in memory 
access, cpu slowdowns or network delays. This calls for 
additional  mechanisms  that  deal  explicitly  with  time, 
starting  with  the  basic  step  of  a  particular  temporal 
assumptions  (e.g.  a  global  clock  versus  distributed 
synchronization)  and  explicit  tracking  of  time.  An 
extension to CORBA, Real-time CORBA,5 is meant  to 
address  this  shortcoming  in  the  original  design. 
However,  because  CORBA and  other  object-oriented 
approaches (e.g. DCOM6) try to make the whole system 
behave  like  one  big  computer  program,  including 
blocking  on  remote  procedure  calls,  they  can  be 
cumbersome  to  deploy  and  debug  and  they  do  not 
support well systems in which real-time performance is 
paramount. 

Message-Orientation
Object-oriented  systems  like  CORBA  only  support 

2 http://www.cs.umbc.edu/kqml/
3 Cf. http://www.naradabrokering.org/
4 http://www.omg.org/technology/documents/formal/corba_iiop.htm
5 http://www.cs.wustl.edu/~schmidt/TAO.html
6 http://www.microsoft.com/com/wpaper/default.asp#DCOMpapers.
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“pull” communication. That is, modules have to poll for 
data at a set update rate. However, complex information 
processing  systems  require  both  “pull”  and  “push”: 
Modules cannot  always know which messages  may be 
relevant  to  them,  requiring  push,  but  they  will 
sometimes  need  to  ask for  messages  which  only  they 
themselves  know  that  they  need,  requiring  pull.  The 
message-based  model  subsumes  the  remote  procedure 
invocation model and can be expected to overtake it. 
The  alternative  to  the  object-oriented  approach  is 
message-based  routing.  KQML was  an  initiative  that 
predates  most  of  the  current  work  in  this  area  and 
provided  a  framework  for  message-based  machine 
communication that was modeled after natural language 
performatives in speech-act theory (Austin 1962, Searle 
1969).  While  KQML  provided  a  boost  for  the 
subsequent  Semantic  Web7 effort,  it  suffered  from  a 
semantic-pragmatic  confusion:  The  “envelope” 
representation  of  messages  and  the  surface 
representation  of  their  content  was  not  sufficiently 
cleanly  separated.  This  has  been  addressed  in  many 
subsequent efforts.

Practical Issues
Narada2 is a system that has solved numerous problems 
regarding  message-based  routing,  including 
communication  through  firewalls.  Narada  has  so  far 
been implemented in Java.  A practical  problem is that 
many real-time applications require native C/C++ code, 
either for speed purposes or to create native drivers for 
audio  and  video  I/O.  A pure  Java  system  thus  loses 
some  of  its  platform independence  while  at  the  same 
time possibly running more slowly than a clean native 
implementation would. Another issue is the footprint of 
the system; Narada is in many ways unwieldy – with a 
goal  of  solving  a  huge  set  of  design  problems  the 
footprint  has become  prohibitively large for a number 
of  uses,  for  example,  in  its  dependency  on  Xerces,8 

Xalan9 and about 10 other large external libraries. This 
limits deployment on platforms with restricted memory 
sizes  and also makes  it  difficult  to port  the  system to 
other  programming  languages.  A  related  problem, 
which it shares with CORBA, is that it is not simple to 
set up or use.
Except for temporal accountability (see below), systems 
such as Elvin10 and Open Agent  Architecture  (OAA)11 

(Martin et al. 1999) have, to a smaller or larger extent, 
addressed  the  above  requirements.  Elvin  is  a  content-
based  semantic  router  with  a  central  routing  station. 
Elvin has been used in some systems with good results 
(Johnson  et  al.  2004),  showing  that  the  publish-
subscribe  approach  is  a  powerful  way  to  construct 
modular systems. The OAA is a hybrid architecture that 
relies on a special inter-agent communication language 
(ICL) – a logic-based declarative language that is good 

7 http://www.w3.org/2001/sw/
8 http://xml.apache.org/xerces2-j/
9 http://xml.apache.org/xalan-j/
10 http://elvin.dstc.edu.au/
11 http://www.ai.sri.com/~oaa/

for  expressing  high-level,  complex  tasks  and  natural 
language  expressions.  While  this  is  precisely  what  is 
needed for many A.I. applications, it requires a special-
purpose parser, and makes it necessary for all agents in 
the system to contain this parser, which makes it harder 
to  integrate  heterogeneous  components  to  create  a 
single system. 
This  shortcoming  is  also  shared  with  another  similar 
effort  from  FIPA12:  The  FIPA message  and  routing 
specification  uses  a  special  syntax  for  messages, 
requiring it to use non-standard parsers. A more general 
way  of  representing  the  outermost  “envelope”  of  a 
routed message would be to use XML. This achieves a 
higher level  of generality  in the outermost layer  while 
allowing the content of such messages to be represented 
in any applicable language, including ICL. 

Publish-Subscribe
With  the  proliferation  of  peer-to-peer  systems,  the 
benefits  of  message-based,  publish-subscribe  systems 
has been in focus recently (Baldoni et al. 2003). In pub-
sub systems a module can register for a message type, 
and  any  time  a  message  of  that  type  is  posted  (by 
anyone in the system) the message will be delivered to 
the  subscribed  module.  Among  the  most  obvious 
benefits of this system is that the messages embody an 
explicit  representation  of  each  module’s  contextual 
behavior, and carry with it their state.
The  Elvin  system  goes  a  step  further  and  provides 
mechanisms  for  semantically  routing  messages  to 
modules  based  on  the  meaning  of  the  messages’ 
content. This might become an important feature of the 
coming semantic Web (Berners-Lee et al.  2001) where 
the routed messages are meant for human consumption.

Explicit Temporal Representation
While all of the above approaches have pros and cons, 
and  many  may  come  close  to  providing  a  sufficient 
foundation  for  integration  in  cognitive  robotics, 
interactive applications and other large A.I. systems, the 
best ones still fall short because time is by and large an 
ignored problem in all of them: Temporal information is 
managed  only  within  the  agents  or  processing  nodes 
themselves, not in the transmission infrastructure. This 
means  that  a receiver  of a  message  cannot  know how 
long  ago  the  message  was  posted  or  how  old  the 
information is that its content is based on. Message time 
stamping,  as  well  as  quality  of  service  via  prioritized 
scheduling,  are functionalities  still  missing in CORBA 
and  most  of  the  other  message-based  and  publish-
subscribe  based  approaches  including  EQUIP 
(Greenhalgh 2002), Elvin,  OAA and the FIPA message 
and routing specification.

Overview of Whiteboards
Whiteboards  consist  of  (i)  a  general-purpose  message 
type format, (ii) ontologically-defined message and data 
stream  types,  and  (iii)  specifications  for  routing 

12 http://www.fipa.org/
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between system components.  Whiteboards  differ  from 
prior  traditions  in  blackboard  construction  in  a  few 
important  ways.  They  are  not  built  specifically  for 
supporting  reasoning  and  expert  systems  but  are 
somewhat  closer  to  network  routing  technologies. 
Because  they  are  intended  to  help  connect  together 
systems that may be running on different computers and 
written in different programming languages, they use an 
explicit  message  wrapper  layer  and  employ  only 
lightweight  semantics  for  triggering of routing  events. 
In  that  aspect  they  are  closer  to  a  classical  publish-
subscribe information bus than blackboards. 
Whiteboards do not contain special areas for data with 
different priorities;  instead  they expect  that  all  data be 
tagged with a priority and requested quality of service. 
Another important difference is that they are even more 
independent from their many potential applications than 
most of the general-purpose blackboards systems, such 
as HEARSAY-III (Erman et al. 1981) and BB1 (Hayes-
Roth  et  al.  1984).  We  hope  this  will  make  their 
application  relevant  to  a  larger  set  of  problems  and, 
much  as  the  simplicity  and  transparency  of  HTML 
helped with its adoption, will increase their usage as a 
coordinating  mechanism  between  researchers  and 
research teams. 
Whiteboards  have  been  designed  to  have  an  explicit 
representation  of time.  This  supports  the  development 
of  interactive  A.I.  systems  where  data  posting  and 
reception must be non-blocking. Time is an integral part 
of  the  message  format:  Interactivity  requires  that  the 
protocol  have  clear  temporal  accountability, which  it 
does.  In  traditional  blackboard  systems  modules  post 
data to a central server and that data is either delivered 
to  subscribed  modules  by  the  blackboard  (scheduling 
blackboard)  or  the  modules  poll  for  it.  Whiteboards 
enable both. They also provide a localized recording of 
all  system  events,  system  history  (as  far  back  as 
needed), and runtime state. This, combined with polling 
and  simple  but  powerful  query  semantics,  make  the 
whiteboard function as a database of all past events.
Many  early  blackboards  acted  as  a  “global  memory” 
using  only  one  blackboard.  We  recommend  using 
whiteboards somewhat like packages in object-oriented 
programming  languages  like  Java,  i.e.  to  isolate 
logically  related  information  for  purposes  of  easing 
system construction, and enabling a kind of “wide-area 
local”  memory.  The  separate  message  wrapper 
semantics  designed  for  network  routing  makes  this 
relatively  straight  forward.  The  remote  feature  of 
whiteboards has, for example, proven useful in allowing 
easy transmission for off-board processing of video and 
audio gathered from the robot’s body.
To summarize, the main features of whiteboards are:
• Direct addressing as well as publish-subscribe 
• Ontologically-defined message and stream types 
• Simple but powerful message semantics
• Explicit temporal representation 
• Message-type mechanism supports easy subscriptions
• Scheduling prioritization built-in
• Streams and messages with common publish-subscribe 

semantics 

Defining a Whiteboard
A whiteboard is defined by a few parameters:
• Name
• Priority
• Maximum number of messages
• Streams & buffer sizes 
• Location of whiteboard: Local or remote 
A whiteboard has a globally unique name, given to it by 
the  system’s  designer.  The  maximum  number  of 
messages is an integer. Priority of a whiteboard can be 
set  relative  to  other  whiteboards  to  determine  which 
gets to run first, which becomes significant when there 
is  CPU  starvation.  Based  on  the  assumption  that 
message  delivery is  always  the  highest  priority in  the 
system,  whiteboards automatically have higher priority 
than all other system components. 
Stream buffer size has two limits, a soft and a hard. The 
soft  limit  is  used  when  data  is  not  locked.  The  hard 
limit is used when someone is using the data; when data 
on a stream is marked as being 'in use' by a module the 
whiteboard will  not delete the old data even when the 
size grows above the soft limit, only when it reaches the 
hard  limit.  Information  in  the  streams  describes  what 
kind of binary data they contain. 
A whiteboard can be instantiated either on the machine 
where  it  is configured  and or it  can  be configured on 
one  machine  but  instantiated  on  another.  Having  this 
option  as  a  part  of  the  whiteboard  makes  it  easy  to 
specify systems where multiple whiteboards are used to 
mediate information flow between various components 
on a network.

Message & Stream Semantics
The semantics of whiteboard messages are intentionally 
simple,  with  few  required  slots.  Messages  have  a 
content slot that holds the main body of the message,  a 
GUID,13 and timestamps that make it possible for both 
the  runtime  system (message  posters  and readers) and 
human  programmers  to  understand  the  temporal 
evolution of the system as a whole. The timestamps are:
• postedTime
• receivedTime
Posted  time  is  the  precise  point  in  time  when  the 
message left the sender; the received time is the precise 
point in time at which the recipient (whiteboard or other 
module) received the message.
Taken together, the GUID and timestamps can be used 
to  track  and  query  the  full  history  of  the  runtime 
system. This feature can be used by the human designer 
or by the system itself (i.e. the modules).
Since  the  whiteboards  are  always  the  receiver  of  a 
message,  subscriptions  are  handled  through  a  special 
type  of  message  called  a  wakeup  message,  which 
functions as follows:  Upon receiving a message  M of 
type T, the whiteboard will forward it to anyone who is 
subscribed  to messages  of type T; message  M will  be 
the  content  of the wakeup message.  This  arrangement 

13 Global Unique IDentifier; a string that globally and uniquely 
identifies the message it is attached to.
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greatly simplifies message semantics because only two 
timestamps  must  be  interpreted  to  see  what  has 
happened during the transmission of any message.
At  transmission  time,  messages  are  represented  as  an 
XML  structure.  Messages  can  also  handle  binary 
attachments.  By  using  XML  libraries  for  posting, 
subscribing  and  receiving,  messages  can  be 
implemented in any programming language. Messages 
have an optional  priority which enables whiteboards to 
decide  which  messages,  if  any,  it  should  let  take 
precedence  over  others  when  transmitting  them  to 
subscribers. 
As already  mentioned,  all  messages  and  data  streams 
have  a  type.  The  type  allows  full  input  and  output 
definition for the modules, thus embodying an explicit 
representation  of  the  modules’ behavior  in  context  – 
messages  effectively  implement  the  modules’  APIs. 
Types are represented as dot-delimited lists, where each 
delimited  segment  is ontologically defined.  To take an 
example,  for a message  whose content contains words 
from  a  speech  recognizer  based  on  some  processed 
audio input, the message type would start with  Input, 
because  the  content  of  the  message  is  a  further 
processing  on  some  input  received  by  the  system.  A 
further  specification  of  this  message  type  could  be 
Input.Perc.UniM.Hear.Voice.Speak. 
Sentence, where Perc means perception, UniM means 
unimodal  (i.e.  a  single  mode  like  hearing),  Voice 
means that  the sound was determined  to come from a 
human voice, etc. As can be seen, the specification goes 
from the most general to the most specific descriptors, 
left  to  right,  respectively.  In  this  way,  modules  can 
subscribe to a message type by specifying it to any level 
of  detail.  For  example,  a  module  interested  in  all 
messages  related  to  human  voices  would  simply 
subscribe to Input.Perc.UniM.Hear.Voice.*. This 
mechanism  makes  it  easy  to  incrementally  build  and 
debug  of  complex,  interactive  systems  with  multiple 
levels of abstraction.
The opportunity exists to define explicit ontologies for a 
large  set  of  concepts  that  would  standardize  a  wide 
variety  of  information  channel  types,  carrying  either 
discrete  messages  or  streaming  data.  To  further 
facilitate  such  ontological  definitions,  namespace 
indicators  may  be  put  at  the  top  of  the  tree;  for 
example,  RU.S1.Input.Perc would indicate that  the 
segments  following  RU.S1 are  defined  in  a  message 
type  ontology  made  by  Reykjavik  University  called 
“S1”.
This  approach  to  message  types  is  simple  to  use  and 
easily human-readable while still  leveraging the power 
of  ontological  definitions.  This  makes  interchange 
between systems with different message types easier to 
manage,  both  manually  and  automatically.  The  main 
principles  of  whiteboard  messages  and  their 
transmission  are  adopted  from  the  OpenAIR14 

specification,  an  open-source  message  format  and 
routing specification.
Lastly, messages have a slot for language. Its semantics 
match those of KQML messages: It is intended to tell 

14 http://www.mindmakers.org/openair/

the  receiving  system  how  the  content  of  message  is 
encoded. Our language tag also has a version slot which 
can be used to indicate e.g. dialects. For example, if the 
Language slot  holds the string “LISP” the version tag 
could be used to specify e.g. “CommonLISP”.
In addition to handling discrete messages, whiteboards 
employ a mechanism for handling streams of data such 
as  audio  and  video.  These  are  circular  buffers, 
supporting  both pushing and polling  of data,  temporal 
and  content-based  searches,  and  alarms.  Alarms  are 
notification  of  events  such  as  buffers  starting  and 
stopping or the arrival of time-critical information.

Publishing Messages & Streams
Modules  publish  messages  to  whiteboards  via  a  very 
simple  function call.  The parameters  are:  the name of 
the whiteboard (modules must know the IP address and 
port  of  the  whiteboard to  do this  –  see  discussion  on 
component  lookup  below),  the  type  of  the  message 
being posted, cc slot (if any module should be forced to 
receive the message,  see below), and the content of the 
message, if any.
Unlike messages, streams must be defined as part of a 
whiteboard’s specification before  runtime.  This  has to 
do with issues of safety in memory usage, among other 
things.  However,  streams  also  have  a  type,  using  the 
same  dot-delimited  syntax  as  messages,  and  modules 
can reference this type to publish data to a stream. 

Subscribing to Messages & Streams
To subscribe  to  a  message  of  a  particular  type  on  a 
particular  whiteboard,  a  system  component  sends  a 
message of type AIR.Subscribe15 with content  in the 
following form:

<triggers>

<trigger from=”Whiteboard-1” type=”Input.Perc.*”/>

</triggers>

This would register a subscription with a whiteboard of 
the  name  “Whiteboard-1”  for  all  messages  of  type 
Input.Perc.*,  where  “*”  indicates  a  wildcard.  A 
new subscription overrides any existing one. The tag is 
called  “trigger”  because  any  message  of  this  type 
coming into the whiteboard will trigger it to dispatch it 
to the subscribed modules.
Subscribing  to  streams  is  very  similar  to  message 
subscription.  The XML for a stream subscription is of 
the form:
<stream name=”input” source=”Input.Audio.Perception”/>

This would register a subscription with the whiteboard 
that owns the Input.Audio.Perception stream, and 
would  allow the  registered  module  to receive   a  feed 
from  the  stream.  Streams  have  global  unique  types 
because it  makes  it  easy for the  developer  to transfer 
them between whiteboards without having to change the 
code of the modules that use them.

Matching for Routing Subscribed Data
Most semantic data routing approaches used in publish-
15 All messages related to the OpenAIR protocol start with “AIR.”.
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subscribe systems use a large set of structures to match 
on.  That  is,  an  incoming (published)  data  structure  is 
matched against all  of the subscription profiles. These 
structures  are  ontologically  defined  and  are  often 
represented in XML. This matching requires significant 
computation,  because  every  incoming  XML 
representation  requires  both  string  matching  and 
ontological  lookup.  This very heavy method has value 
predominantly  in  a  semantic  Web environment  where 
the publishers and subscribers of data are not known a 
priori. Beyond the significant ontological overhead, this 
also  requires  an  efficient  mechanism  to  support  the 
discovery of various ontologically defined services. 
In  most  closed  development  environments,  however, 
such as those found in many A.I. labs, this approach is 
overkill, since it requires significant development times 
and  introduces  runtime  overhead.  The  dot-delimited 
multiple tree structure used in whiteboards eliminates a 
significant amount  of the overhead associated with the 
processing time  required for matching,  yet  retains  the 
benefits  of  well-defined  classifications  of  the  data 
contained  in  the  message  and  streams.  In  a  small 
development  environment  of  less  than  10 people,  and 
perhaps  upwards  of  50  to  100  people,  this  approach 
presents a favorable alternative. 

Routing & Priority Model
In the whiteboard model,  all  messages  travel  between 
modules  via  a  whiteboard.  A  message  is  therefore 
always  addressed  to a whiteboard.  However,  unlike  in 
the  FIPA architecture  specification,  modules  can  also 
communicate  with  each  other  directly. To satisfy  the 
timing  issues  and  the  “bookkeeping”  role  that  a 
whiteboard must serve,  direct  routing  is done via  a  cc 
(from the postal  mail  vernacular “carbon copy”).  Any 
module that is listed on the cc list of a message will get  
that message, whether it is subscribed to its type or not. 
This way modules can post “private” messages to each 
other, for purposes of efficiency, yet a whiteboard will 
always get a copy of the message, retaining the benefits 
of local access to all system events.
All modules in a whiteboard system have unique names, 
and  therefore  all  messages  can  be  traced  to  a  unique 
source and a point in time. 

Implementation & Use in Robotics
We have  incorporated  whiteboards  into  an  integrated 
framework (Thórisson et al. 2005) that we are currently 
using for various  projects at  R.U.  Among the systems 
for which we have used whiteboards extensively during 
development is Skundar, a mobile robot platform with a 
WiFi  connection,  designed  and  built  at  Reykjavik 
University. The platform's hardware is based on simple, 
modular  components.  It  includes  two  motors  with 
wheels  for  mobility  (from  motorized  scooters)  and  a 
motor control interface, MD22, using the I2C protocol,16 
a  PC motherboard,  a  USB webcam  for  video  capture 
and two optical  USB mice  for tracking movements on 
the  floor,  with  the  mouse  for  sensing  movement, 

16 I2C (“I-squared-C”) is a two-line bus that is widely used to connect 
chips together on a printed circuit board.

forwards  and  backwards,  being  placed  between  the 
drive  gears,  the other  sensing rotation being  placed at 
the robot's front.17 All components are off-the-shelf. 
Skundar does local processing of data from the sensors 
and issues commands to the motors.  We use the WiFi 
connection  to  do  off-board  processing,  making  it 
possible to expand the robot's “brain” as the need arises. 
12  dual-processor  Intel  processor  computers  running 
Linux18 are used to process data such as audio and video 
from the robot, and to generate higher-level plans. 
Our software implementation includes a mixture of Java 
and  C++ software  modules.  (In  combination  with  the 
OpenAIR  specification  whiteboards  themselves  are 
programming language  independent.)   At first  we had 
five main components (Figure 1) that communicated via 
whiteboards running the in the Psyclone software.  The 
Rob0Mouse  module  uses  the  libgii19 code  library  to 
monitor  the  mice  and  their  movements.  It  reads 
information from the mice  as MouseMotion  messages. 
This  module  posts  mouse  data  updates  at  10  Hz, 
whether the robot moves or not. Rob0Tracker (Tracker) 
receives  MouseMotion  messages  and  computes  the 
direction and displacement  of the  robot.  It  posts posts 
this information as Track messages.  

FIGURE  1.  The  origininal  5  modules  implemented  in  the 
Skundar  robot,  with  all  interaction  (except  vision)  being 
handled via discrete OpenAIR messages.

The  motion  control  component,  Rob0MotionControl, 
controls  the  motors.  It  subscribes  to  Track  message 
types that contain Skundar's direction and speed, as well 
as  a  Cmd2dMove  message  that  contains  information 
about  where  it  should  be  heading  and  how fast.  The 
Rob0MotionControl  module  uses  fuzzy  logic  (Zadeh 
1994)  to  regulate  speed  and  direction.  The  motor 
control  component,  Rob0MotorControl,  controls  the 
MD22 through I2C. It  sends instructions to the motors 
via DiffMotion messages.
The vision component, Rob0Vision, accepts data  from 

17 The full spec is available in Icelandic at: 
http://wiki.isir.is/wiki/Skundar_aka_Véldýrið_Pottormur
18 Linux Gentoo 2.6.
19 http://www.ibiblio.org/ggicore/packages/libgii.html

http://wiki.isir.is/wiki/Skundar_aka_V%C3%A9ld%C3%BDri%C3%B0_Pottormur
http://wiki.isir.is/wiki/Skundar_aka_V%C3%A9ld%C3%BDri%C3%B0_Pottormur
http://wiki.isir.is/wiki/Skundar_aka_V%C3%A9ld%C3%BDri%C3%B0_Pottormur
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video4linux driver and sends them to Psyclone that then 
sends them to another  computer for further processing. 
It uses libjpeg to compress the photos. Rob0Vision is a 
library  that  runs  inside  the  Psyclone  server  (internal 
module)  and  therefore  doesn't  create  any  network 
traffic.
The  functionality  and  number  of  initial  modules  was 
determined by simply breaking the low-level problems 
of the robot's behavior into intuitive components, taking 
operational constraints into account such as the limited-
bandwidth WiFi link and the limited power of the on-
board  processor,  following  the  guidelines  of  the 
Constructionist Design Methodology. 

FIGURE  2.  The  modified  robot  sensing  and  control 
architecture  after  analysis  of  the  power  of  the  processor 
onboard the robot was deemed insufficient to handle the data 
traffic  of the initial  design.  Compared to many alternatives,  
the use of whiteboards made the change easy, as all interfaces 
between  modules  have  already  been  directly  externalized 
through messages.

After  the design had been implemented  and tested  we 
found that the design created a bottleneck for some of 
the  necessary  processing,  compromising  the  the  safe 
operation  of  the  robot.  More  specifically,  the 
transmission  of  messages  between  modules  was  not 
being handled as fast as we had wanted. This result was 
not foreseen  – we had not  tested  the  system with any 
comparable configuration. 
Since we had cleanly modularized the functions of the 
robot this problem was easily remedied through of one 
of the main benefits of using whiteboards during design 
and development: We combined the Mouse and Tracker 
components  into  a  single  component,  removing  the 
need  to  pass  messages  between  them.  As  this  new 
module  was  written  in  C++  we  also  effortlessly 
converted  it  into  an  internal  module  in  Psyclone 
(Picture  2).  By  doing  this  we  reduced  the  message 
transfer  necessary (what  was explicit  messages  before 
was now handled via  variable passing inside the same 
executable).  By  making  it  an  internal  module  all 
communication with  whiteboards is further  reduced to 
pointer arithmetic – much faster than the prior solution, 

which  necessarily  relied  on TCP/IP messages.  On the 
negative  side,  however,  developers  lose  the  ability  to 
monitor  the  communication  between  the  Mouse  and 
Tracker  modules  at  runtime.  Also,  raw Mouse data  is 
lost from the system. 
Whiteboards  are  also  being  used  in  a  nation-wide 
“Garage  A.I.”  movement.20 Among  these  is  the 
construction of a robot  with  an on-board  motherboard 
with  WiFi.  It  is  being  used  to  stream  data  from  a 
microphone, camera and computer mice,  and integrate 
this with motion control, navigation and speech output. 
Whiteboards have also been evaluated in a comparison 
to  the  CAVIAR computer  vision  architecture,  with 
positive results (List et al. 2005). Mixing binary streams 
and  messages  freely  makes  it  significantly  easier  to 
build  computer  vision  systems  than  with  more 
monolithic approaches.
We have  incorporated  whiteboards  into  an  integrated 
framework (Thórisson 2005) that we are currently using 
for  various  projects  at  Reykjavík  University.  One 
involves  the  integration  of  speech  recognition  and 
synthesis  and  agents  inhabiting  a  virtual  world.  The 
components are written in various languages. The use of 
whiteboard  constructs  significantly  simplifies 
connecting them together into a larger system. The use 
of semantically tagged messages and streams is proving 
to  be  a  very  powerful  mechanism,  especially  for  the 
A.I. parts of the applications. 

Conclusion
We have  presented  an  updated  version  of  scheduling 
blackboards  called  whiteboards.  Whiteboards  address 
several  deficiencies  of  earlier  blackboard  systems, 
while also simplifying their functionality. 
The  whiteboards  allow  a  level  of  modularity  in  the 
construction of complex systems that  is unmatched by 
most  other  approaches;  we  believe  that  increased 
modularity  –  even  coarse-grained  modularity  –  in 
current A.I. efforts could help the field tremendously by 
allowing  people  to  integrate  each  others'  work  more 
easily.  Blackboards  in  general,  and  whiteboards  in 
particular, can play a role in facilitating this.  The kind 
of  modularity  supported  by  whiteboards  does  not 
impose  a  particular  school  of  thought  on  the 
architectures  that  can  be  built  with  it.  There  is  for 
example  nothing  in  the  nature  of  whiteboards  that 
prevents them from being  used in behavior-based A.I. 
(c.f.  Brooks  1991),  “good  old  fashioned”  A.I.,  and 
hybrid systems. Whiteboards embody a tried and tested 
approach  to  software  development.  They  present  a 
structured  way  of  thinking  about  the  elements  of  a 
system  and  their  interactions  that  makes  them  more 
explicit than most other approaches.
For this reason interface standardization for modules is 
important.  Among  the  interface  issues,  standardizing 
message format is key, along with creation of message 
type ontologies. An effort is already underway towards 
this  – a  specification  called  OpenAIR.21 With its  lean 
yet  relatively  complete  message  and  routing 
20 http://ailab.ru.is/projects/garageai
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specification, OpenAIR provides uniformity in message 
APIs,  including  temporality,  and  may  be  used  across 
various A.I. efforts.
The small footprint and overhead of whiteboards, which 
they owe mostly to the simplicity of their specification, 
also  makes  them  attractive  to  employ,  even  in 
embedded systems.
Conceptual clarity of the routing model and ease of use 
are  key  components  for  wide  adoption  of  any 
specification.  We believe  that  whiteboards meet  these 
needs  and  we  hope  to  see  others  starting  to  use 
modularity  and  whiteboards  to  facilitate  collaboration 
and  build  larger  A.I.  systems  that  come  closer  to 
representing the complexity found in intelligent systems 
in nature.
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