
 Technical Report

SCHEDULING BLACKBOARDS
FOR INTERACTIVE ROBOTS

Kristinn R. Thórisson, Thor List
Christopher C. Pennock, John DiPirro, Freyr Magnusson

RUTR-CS05001

2005

Reykjavik University – Department of Computer Science

1 RUTR-CS-05001

Scheduling Blackboards for Interactive Robots

Kristinn R. Thórisson,1 Thor List,2

Christopher Pennock,4 John DiPirro,3 Freyr Magnússon1

1Reykjavík University, CADIA / Department of Computer Science, Ofanleiti 2, 203 Reykjavik, Iceland; thorisson(at)ru(dot)is
2University of Edinburgh, IPAB, JCMB, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland, U.K.

4New York University, Media Research Lab, 719 Broadway 12th floor, New York, NY 10003 U.S.A.
3Communicative Machines, 33 Viewforth, suite 4F1, Edinburgh, EH10 4JE, Scotland, U.K.

Abstract
An increase in systems integration, for example in
humanoid robotics and intelligent environments, has
called for better solutions to support multi-module
integration. Blackboards can simplify construction of
systems with large numbers of heterogeneous
components requiring a high number of fine-grained
interactions. In this paper we describe the use of a
scheduling blackboard used for developing interactive
robots. Our blackboards both simplify and extend the
blackboard model in a number of ways. Chief among
them are: An explicit temporal model; quality of
service; publish-subscribe; queries; discrete messaging;
streaming data; programming language independence;
as well as a number of solutions to practical issues for
improving development effort and runtime performance.
Whiteboards present a compelling case for the use of
scheduling blackboards in robotics, where multiple
functionalities and modules need to be integrated into a
coherent whole.

Introduction
Blackboards (Selfridge 1959, Englemore 1986, Adler
1992) have proven a useful construct in A.I. for
facilitating interaction between heterogeneous
components with complex run-time behaviors. The
principal idea behind blackboards is modularity: A
problem space is broken up into problem areas, each of
which has its own component or “expert” working on it,
communicating with experts in other areas via the
blackboard, posting information to it and reading
information from it. Blackboards are thus a general way
of enabling multiple logical modules to exchange
information in environments with unpredictable events.
Many issues are hindering progress in A.I.; lack of
computing power ranks high among them. Another is
the lack of powerful development tools and
methodologies that help coordinate efforts between
researchers and groups: attempting to build human-level
intelligence without either is bound to fail. The basic
tools need to enable integration yet cannot make too
many assumptions about how they are to be used. Past
efforts to provide general-purpose blackboards have
failed in part because their complexity was too high.
Modularity is a prime candidate as viable methodology

when it comes to building large systems that integrate
sensing, planning, language and action. Recent
examples have confirmed the notion that modular
approaches speed up the development of complex
systems (cf. Simmons et al. 2003, Bischoff 2000,
Martinho et al. 2000). They have also proven to
facilitate the collaborations of large teams of
researchers (e.g. Fink et al. 1996, 1995). Modularity
played a large role in the construction of successful
robotic systems such as Bischoff et al.'s HERMES robot
(2000) and Simmons et al.’s robot Grace (2003), the
latter of which involved the work of 5 institutions and
over 20 people. Martinho et al. (2000) describe an
architecture designed to facilitate modular, rapid
development of theatrical agents in virtual worlds. As in
many other similar systems, their approach involves
splitting the processing into separate modules, each of
which can be developed somewhat independently of the
others. This enables parallel implementation, reducing
development time. Subsequently combining the pieces
to form a full system becomes a simpler task.
Message passing also facilitates the construction of
modular systems. Maxwell et al. (2001) used a
message-passing architecture with central memory to
facilitate modular integration of several key
technologies needed for constructing interactive robots.
Their robots have sophisticated vision, planning and
navigation routines, speech recognition, speech
synthesis, and facial expression. With 10
undergraduates working on the project for 8 weeks,
constructing three different robots with these features,
the application of blackboards or message-based
architecture to such problems is given strong support.
While the above examples show the promise of
blackboard architectures, it is important to note that
none of them explicitly employ blackboards. We
believe this is because most blackboards have
historically been designed and used exclusively for
discrete messaging. For robotics, computer vision and
hearing, an important requirement is that both
streaming and atomic data types be directly supported.
Computer vision, for example, may require several
stages of a video stream, each one being the result of a
particular type of processing. The integration with
discrete data types is also a necessity if decisions, which

2 RUTR-CS-05001

are discrete by nature, have to be made based on the
visual processing. Such systems can become quite
complex, especially during their development stages. It
is therefore critical that the development framework
support easy integration of the two. However, it is
conceptually very difficult to meet this requirement. An
ideal system would make it possible to freely mix data
types together during the development of a systems
without introducing undue runtime overhead, complex
architecture or difficulties in use. For example, it is not
uncommon that modifications of a computer vision
system under development require frequent changes in
the flow and stages of video streams, mixing discrete
events into the processing and enabling event-driven
processing of streams.
A recent A.I. Magazine article about the annual
RoboCup competition (Pagello et al. 2004) states that
integration is “one of the biggest challenges remaining”
in the field. An increased interest in systems
integration, for example in humanoid robotics and
interactive environments, is calling for better solutions
in support for integration.
With roots dating back to the early days of A.I. and the
bulk of work done in the 80s, it may seem a step
backward to revisit the blackboard idea. However,
current practice indicates otherwise. With an eye to the
present state and recent developments in the field, this
paper describes a type of blackboard called a
whiteboard1 that retains the benefits of blackboards
already mentioned but addresses the above deficiencies
using ideas from network routing and semantic web
technologies. Rather than making detailed assumptions
about the nature of their usage in A.I., whiteboards
impose only very general design principles on the
systems they are used in and assume a generic modular
software development methodology. Multiple operating
systems, programming languages and the proliferation
of cheap computers and networks, makes the need for a
general approach to integration of distributed systems in
A.I. more important than ever. Whiteboards try to
exploit this opportunity and answer the need for basic
data exchange mechanisms, while being sufficiently
powerful for use in complex integration projects.
We will begin with a review of related work and then
describe the main features and benefits of whiteboards.

Related Work
The history of blackboards goes back to Selfridge’s
Pandemonium system (1959). Since then a host of
systems have been built around the concept of agents or
daemons with a shared memory, with significant
advances being made in the mid- and late 1980s (Adler
1992). The agents in blackboard systems have been
referred to by various terms, including “knowledge
sources”, “daemons” and “experts”, the terms chosen
being related to their intended role in their respective
systems.
A number of past systems were focused on mechanisms
and representations particular to specific domains. For

1 Whiteboards are so called because they are the modern descendant of
blackboards.

example, HEARSAY-II (Erman 1980), one of the
earliest blackboard systems, was specifically built for
speech recognition. GBB (Corkill et al. 1987) provides
general mechanisms data passing and module
triggering, but goes to great lengths to provide support
for spatial representations and data handling.
Recently a revived interest in agent-based architectures
has lead to a focus on distributed systems. Several
notable projects have been started in recent years
focusing on agent-based communication, among them
KQML2 (Knowledge Query and Markup Language)
(Mayfield et al. 1995) and there have been more recent
efforts related to grid computing.3 Distributed systems
share many features with blackboards, though with
notable exceptions. One of the differences is that in
systems with distributed agents the agents know much
more about basic communication than the experts in
older blackboard systems. This means that distributed
agents are in less obvious need of the “smart routing”
that scheduling blackboards provide. These can be
classified into object-oriented and message-oriented
approaches.

Object-Orientation
CORBA4 is a relatively general technology that allows
transparent communication between programs running
on multiple computers that are written in different
languages. CORBA takes the object-oriented approach:
An object makes a request for a service or for
information, and this request is brokered by a central
server, simulating an extended function call, or Remote
Method Invocation (RMI). Java has a similar facility
built-in, for bridging between separate Java programs.
The RMI mechanism works well for systems that can
assume a larger temporal granularity than the network
can provide. In many real-time systems, however, this
assumption is insufficient: The clock of the real world
keeps ticking on with no regard for delays in memory
access, cpu slowdowns or network delays. This calls for
additional mechanisms that deal explicitly with time,
starting with the basic step of a particular temporal
assumptions (e.g. a global clock versus distributed
synchronization) and explicit tracking of time. An
extension to CORBA, Real-time CORBA,5 is meant to
address this shortcoming in the original design.
However, because CORBA and other object-oriented
approaches (e.g. DCOM6) try to make the whole system
behave like one big computer program, including
blocking on remote procedure calls, they can be
cumbersome to deploy and debug and they do not
support well systems in which real-time performance is
paramount.

Message-Orientation
Object-oriented systems like CORBA only support

2 http://www.cs.umbc.edu/kqml/
3 Cf. http://www.naradabrokering.org/
4 http://www.omg.org/technology/documents/formal/corba_iiop.htm
5 http://www.cs.wustl.edu/~schmidt/TAO.html
6 http://www.microsoft.com/com/wpaper/default.asp#DCOMpapers.

3 RUTR-CS-05001

“pull” communication. That is, modules have to poll for
data at a set update rate. However, complex information
processing systems require both “pull” and “push”:
Modules cannot always know which messages may be
relevant to them, requiring push, but they will
sometimes need to ask for messages which only they
themselves know that they need, requiring pull. The
message-based model subsumes the remote procedure
invocation model and can be expected to overtake it.
The alternative to the object-oriented approach is
message-based routing. KQML was an initiative that
predates most of the current work in this area and
provided a framework for message-based machine
communication that was modeled after natural language
performatives in speech-act theory (Austin 1962, Searle
1969). While KQML provided a boost for the
subsequent Semantic Web7 effort, it suffered from a
semantic-pragmatic confusion: The “envelope”
representation of messages and the surface
representation of their content was not sufficiently
cleanly separated. This has been addressed in many
subsequent efforts.

Practical Issues
Narada2 is a system that has solved numerous problems
regarding message-based routing, including
communication through firewalls. Narada has so far
been implemented in Java. A practical problem is that
many real-time applications require native C/C++ code,
either for speed purposes or to create native drivers for
audio and video I/O. A pure Java system thus loses
some of its platform independence while at the same
time possibly running more slowly than a clean native
implementation would. Another issue is the footprint of
the system; Narada is in many ways unwieldy – with a
goal of solving a huge set of design problems the
footprint has become prohibitively large for a number
of uses, for example, in its dependency on Xerces,8

Xalan9 and about 10 other large external libraries. This
limits deployment on platforms with restricted memory
sizes and also makes it difficult to port the system to
other programming languages. A related problem,
which it shares with CORBA, is that it is not simple to
set up or use.
Except for temporal accountability (see below), systems
such as Elvin10 and Open Agent Architecture (OAA)11

(Martin et al. 1999) have, to a smaller or larger extent,
addressed the above requirements. Elvin is a content-
based semantic router with a central routing station.
Elvin has been used in some systems with good results
(Johnson et al. 2004), showing that the publish-
subscribe approach is a powerful way to construct
modular systems. The OAA is a hybrid architecture that
relies on a special inter-agent communication language
(ICL) – a logic-based declarative language that is good

7 http://www.w3.org/2001/sw/
8 http://xml.apache.org/xerces2-j/
9 http://xml.apache.org/xalan-j/
10 http://elvin.dstc.edu.au/
11 http://www.ai.sri.com/~oaa/

for expressing high-level, complex tasks and natural
language expressions. While this is precisely what is
needed for many A.I. applications, it requires a special-
purpose parser, and makes it necessary for all agents in
the system to contain this parser, which makes it harder
to integrate heterogeneous components to create a
single system.
This shortcoming is also shared with another similar
effort from FIPA12: The FIPA message and routing
specification uses a special syntax for messages,
requiring it to use non-standard parsers. A more general
way of representing the outermost “envelope” of a
routed message would be to use XML. This achieves a
higher level of generality in the outermost layer while
allowing the content of such messages to be represented
in any applicable language, including ICL.

Publish-Subscribe
With the proliferation of peer-to-peer systems, the
benefits of message-based, publish-subscribe systems
has been in focus recently (Baldoni et al. 2003). In pub-
sub systems a module can register for a message type,
and any time a message of that type is posted (by
anyone in the system) the message will be delivered to
the subscribed module. Among the most obvious
benefits of this system is that the messages embody an
explicit representation of each module’s contextual
behavior, and carry with it their state.
The Elvin system goes a step further and provides
mechanisms for semantically routing messages to
modules based on the meaning of the messages’
content. This might become an important feature of the
coming semantic Web (Berners-Lee et al. 2001) where
the routed messages are meant for human consumption.

Explicit Temporal Representation
While all of the above approaches have pros and cons,
and many may come close to providing a sufficient
foundation for integration in cognitive robotics,
interactive applications and other large A.I. systems, the
best ones still fall short because time is by and large an
ignored problem in all of them: Temporal information is
managed only within the agents or processing nodes
themselves, not in the transmission infrastructure. This
means that a receiver of a message cannot know how
long ago the message was posted or how old the
information is that its content is based on. Message time
stamping, as well as quality of service via prioritized
scheduling, are functionalities still missing in CORBA
and most of the other message-based and publish-
subscribe based approaches including EQUIP
(Greenhalgh 2002), Elvin, OAA and the FIPA message
and routing specification.

Overview of Whiteboards
Whiteboards consist of (i) a general-purpose message
type format, (ii) ontologically-defined message and data
stream types, and (iii) specifications for routing

12 http://www.fipa.org/

4 RUTR-CS-05001

between system components. Whiteboards differ from
prior traditions in blackboard construction in a few
important ways. They are not built specifically for
supporting reasoning and expert systems but are
somewhat closer to network routing technologies.
Because they are intended to help connect together
systems that may be running on different computers and
written in different programming languages, they use an
explicit message wrapper layer and employ only
lightweight semantics for triggering of routing events.
In that aspect they are closer to a classical publish-
subscribe information bus than blackboards.
Whiteboards do not contain special areas for data with
different priorities; instead they expect that all data be
tagged with a priority and requested quality of service.
Another important difference is that they are even more
independent from their many potential applications than
most of the general-purpose blackboards systems, such
as HEARSAY-III (Erman et al. 1981) and BB1 (Hayes-
Roth et al. 1984). We hope this will make their
application relevant to a larger set of problems and,
much as the simplicity and transparency of HTML
helped with its adoption, will increase their usage as a
coordinating mechanism between researchers and
research teams.
Whiteboards have been designed to have an explicit
representation of time. This supports the development
of interactive A.I. systems where data posting and
reception must be non-blocking. Time is an integral part
of the message format: Interactivity requires that the
protocol have clear temporal accountability, which it
does. In traditional blackboard systems modules post
data to a central server and that data is either delivered
to subscribed modules by the blackboard (scheduling
blackboard) or the modules poll for it. Whiteboards
enable both. They also provide a localized recording of
all system events, system history (as far back as
needed), and runtime state. This, combined with polling
and simple but powerful query semantics, make the
whiteboard function as a database of all past events.
Many early blackboards acted as a “global memory”
using only one blackboard. We recommend using
whiteboards somewhat like packages in object-oriented
programming languages like Java, i.e. to isolate
logically related information for purposes of easing
system construction, and enabling a kind of “wide-area
local” memory. The separate message wrapper
semantics designed for network routing makes this
relatively straight forward. The remote feature of
whiteboards has, for example, proven useful in allowing
easy transmission for off-board processing of video and
audio gathered from the robot’s body.
To summarize, the main features of whiteboards are:
• Direct addressing as well as publish-subscribe
• Ontologically-defined message and stream types
• Simple but powerful message semantics
• Explicit temporal representation
• Message-type mechanism supports easy subscriptions
• Scheduling prioritization built-in
• Streams and messages with common publish-subscribe

semantics

Defining a Whiteboard
A whiteboard is defined by a few parameters:
• Name
• Priority
• Maximum number of messages
• Streams & buffer sizes
• Location of whiteboard: Local or remote
A whiteboard has a globally unique name, given to it by
the system’s designer. The maximum number of
messages is an integer. Priority of a whiteboard can be
set relative to other whiteboards to determine which
gets to run first, which becomes significant when there
is CPU starvation. Based on the assumption that
message delivery is always the highest priority in the
system, whiteboards automatically have higher priority
than all other system components.
Stream buffer size has two limits, a soft and a hard. The
soft limit is used when data is not locked. The hard
limit is used when someone is using the data; when data
on a stream is marked as being 'in use' by a module the
whiteboard will not delete the old data even when the
size grows above the soft limit, only when it reaches the
hard limit. Information in the streams describes what
kind of binary data they contain.
A whiteboard can be instantiated either on the machine
where it is configured and or it can be configured on
one machine but instantiated on another. Having this
option as a part of the whiteboard makes it easy to
specify systems where multiple whiteboards are used to
mediate information flow between various components
on a network.

Message & Stream Semantics
The semantics of whiteboard messages are intentionally
simple, with few required slots. Messages have a
content slot that holds the main body of the message, a
GUID,13 and timestamps that make it possible for both
the runtime system (message posters and readers) and
human programmers to understand the temporal
evolution of the system as a whole. The timestamps are:
• postedTime
• receivedTime
Posted time is the precise point in time when the
message left the sender; the received time is the precise
point in time at which the recipient (whiteboard or other
module) received the message.
Taken together, the GUID and timestamps can be used
to track and query the full history of the runtime
system. This feature can be used by the human designer
or by the system itself (i.e. the modules).
Since the whiteboards are always the receiver of a
message, subscriptions are handled through a special
type of message called a wakeup message, which
functions as follows: Upon receiving a message M of
type T, the whiteboard will forward it to anyone who is
subscribed to messages of type T; message M will be
the content of the wakeup message. This arrangement

13 Global Unique IDentifier; a string that globally and uniquely
identifies the message it is attached to.

5 RUTR-CS-05001

greatly simplifies message semantics because only two
timestamps must be interpreted to see what has
happened during the transmission of any message.
At transmission time, messages are represented as an
XML structure. Messages can also handle binary
attachments. By using XML libraries for posting,
subscribing and receiving, messages can be
implemented in any programming language. Messages
have an optional priority which enables whiteboards to
decide which messages, if any, it should let take
precedence over others when transmitting them to
subscribers.
As already mentioned, all messages and data streams
have a type. The type allows full input and output
definition for the modules, thus embodying an explicit
representation of the modules’ behavior in context –
messages effectively implement the modules’ APIs.
Types are represented as dot-delimited lists, where each
delimited segment is ontologically defined. To take an
example, for a message whose content contains words
from a speech recognizer based on some processed
audio input, the message type would start with Input,
because the content of the message is a further
processing on some input received by the system. A
further specification of this message type could be
Input.Perc.UniM.Hear.Voice.Speak.
Sentence, where Perc means perception, UniM means
unimodal (i.e. a single mode like hearing), Voice
means that the sound was determined to come from a
human voice, etc. As can be seen, the specification goes
from the most general to the most specific descriptors,
left to right, respectively. In this way, modules can
subscribe to a message type by specifying it to any level
of detail. For example, a module interested in all
messages related to human voices would simply
subscribe to Input.Perc.UniM.Hear.Voice.*. This
mechanism makes it easy to incrementally build and
debug of complex, interactive systems with multiple
levels of abstraction.
The opportunity exists to define explicit ontologies for a
large set of concepts that would standardize a wide
variety of information channel types, carrying either
discrete messages or streaming data. To further
facilitate such ontological definitions, namespace
indicators may be put at the top of the tree; for
example, RU.S1.Input.Perc would indicate that the
segments following RU.S1 are defined in a message
type ontology made by Reykjavik University called
“S1”.
This approach to message types is simple to use and
easily human-readable while still leveraging the power
of ontological definitions. This makes interchange
between systems with different message types easier to
manage, both manually and automatically. The main
principles of whiteboard messages and their
transmission are adopted from the OpenAIR14

specification, an open-source message format and
routing specification.
Lastly, messages have a slot for language. Its semantics
match those of KQML messages: It is intended to tell

14 http://www.mindmakers.org/openair/

the receiving system how the content of message is
encoded. Our language tag also has a version slot which
can be used to indicate e.g. dialects. For example, if the
Language slot holds the string “LISP” the version tag
could be used to specify e.g. “CommonLISP”.
In addition to handling discrete messages, whiteboards
employ a mechanism for handling streams of data such
as audio and video. These are circular buffers,
supporting both pushing and polling of data, temporal
and content-based searches, and alarms. Alarms are
notification of events such as buffers starting and
stopping or the arrival of time-critical information.

Publishing Messages & Streams
Modules publish messages to whiteboards via a very
simple function call. The parameters are: the name of
the whiteboard (modules must know the IP address and
port of the whiteboard to do this – see discussion on
component lookup below), the type of the message
being posted, cc slot (if any module should be forced to
receive the message, see below), and the content of the
message, if any.
Unlike messages, streams must be defined as part of a
whiteboard’s specification before runtime. This has to
do with issues of safety in memory usage, among other
things. However, streams also have a type, using the
same dot-delimited syntax as messages, and modules
can reference this type to publish data to a stream.

Subscribing to Messages & Streams
To subscribe to a message of a particular type on a
particular whiteboard, a system component sends a
message of type AIR.Subscribe15 with content in the
following form:

<triggers>

<trigger from=”Whiteboard-1” type=”Input.Perc.*”/>

</triggers>

This would register a subscription with a whiteboard of
the name “Whiteboard-1” for all messages of type
Input.Perc.*, where “*” indicates a wildcard. A
new subscription overrides any existing one. The tag is
called “trigger” because any message of this type
coming into the whiteboard will trigger it to dispatch it
to the subscribed modules.
Subscribing to streams is very similar to message
subscription. The XML for a stream subscription is of
the form:
<stream name=”input” source=”Input.Audio.Perception”/>

This would register a subscription with the whiteboard
that owns the Input.Audio.Perception stream, and
would allow the registered module to receive a feed
from the stream. Streams have global unique types
because it makes it easy for the developer to transfer
them between whiteboards without having to change the
code of the modules that use them.

Matching for Routing Subscribed Data
Most semantic data routing approaches used in publish-
15 All messages related to the OpenAIR protocol start with “AIR.”.

6 RUTR-CS-05001

subscribe systems use a large set of structures to match
on. That is, an incoming (published) data structure is
matched against all of the subscription profiles. These
structures are ontologically defined and are often
represented in XML. This matching requires significant
computation, because every incoming XML
representation requires both string matching and
ontological lookup. This very heavy method has value
predominantly in a semantic Web environment where
the publishers and subscribers of data are not known a
priori. Beyond the significant ontological overhead, this
also requires an efficient mechanism to support the
discovery of various ontologically defined services.
In most closed development environments, however,
such as those found in many A.I. labs, this approach is
overkill, since it requires significant development times
and introduces runtime overhead. The dot-delimited
multiple tree structure used in whiteboards eliminates a
significant amount of the overhead associated with the
processing time required for matching, yet retains the
benefits of well-defined classifications of the data
contained in the message and streams. In a small
development environment of less than 10 people, and
perhaps upwards of 50 to 100 people, this approach
presents a favorable alternative.

Routing & Priority Model
In the whiteboard model, all messages travel between
modules via a whiteboard. A message is therefore
always addressed to a whiteboard. However, unlike in
the FIPA architecture specification, modules can also
communicate with each other directly. To satisfy the
timing issues and the “bookkeeping” role that a
whiteboard must serve, direct routing is done via a cc
(from the postal mail vernacular “carbon copy”). Any
module that is listed on the cc list of a message will get
that message, whether it is subscribed to its type or not.
This way modules can post “private” messages to each
other, for purposes of efficiency, yet a whiteboard will
always get a copy of the message, retaining the benefits
of local access to all system events.
All modules in a whiteboard system have unique names,
and therefore all messages can be traced to a unique
source and a point in time.

Implementation & Use in Robotics
We have incorporated whiteboards into an integrated
framework (Thórisson et al. 2005) that we are currently
using for various projects at R.U. Among the systems
for which we have used whiteboards extensively during
development is Skundar, a mobile robot platform with a
WiFi connection, designed and built at Reykjavik
University. The platform's hardware is based on simple,
modular components. It includes two motors with
wheels for mobility (from motorized scooters) and a
motor control interface, MD22, using the I2C protocol,16
a PC motherboard, a USB webcam for video capture
and two optical USB mice for tracking movements on
the floor, with the mouse for sensing movement,

16 I2C (“I-squared-C”) is a two-line bus that is widely used to connect
chips together on a printed circuit board.

forwards and backwards, being placed between the
drive gears, the other sensing rotation being placed at
the robot's front.17 All components are off-the-shelf.
Skundar does local processing of data from the sensors
and issues commands to the motors. We use the WiFi
connection to do off-board processing, making it
possible to expand the robot's “brain” as the need arises.
12 dual-processor Intel processor computers running
Linux18 are used to process data such as audio and video
from the robot, and to generate higher-level plans.
Our software implementation includes a mixture of Java
and C++ software modules. (In combination with the
OpenAIR specification whiteboards themselves are
programming language independent.) At first we had
five main components (Figure 1) that communicated via
whiteboards running the in the Psyclone software. The
Rob0Mouse module uses the libgii19 code library to
monitor the mice and their movements. It reads
information from the mice as MouseMotion messages.
This module posts mouse data updates at 10 Hz,
whether the robot moves or not. Rob0Tracker (Tracker)
receives MouseMotion messages and computes the
direction and displacement of the robot. It posts posts
this information as Track messages.

FIGURE 1. The origininal 5 modules implemented in the
Skundar robot, with all interaction (except vision) being
handled via discrete OpenAIR messages.

The motion control component, Rob0MotionControl,
controls the motors. It subscribes to Track message
types that contain Skundar's direction and speed, as well
as a Cmd2dMove message that contains information
about where it should be heading and how fast. The
Rob0MotionControl module uses fuzzy logic (Zadeh
1994) to regulate speed and direction. The motor
control component, Rob0MotorControl, controls the
MD22 through I2C. It sends instructions to the motors
via DiffMotion messages.
The vision component, Rob0Vision, accepts data from

17 The full spec is available in Icelandic at:
http://wiki.isir.is/wiki/Skundar_aka_Véldýrið_Pottormur
18 Linux Gentoo 2.6.
19 http://www.ibiblio.org/ggicore/packages/libgii.html

http://wiki.isir.is/wiki/Skundar_aka_V%C3%A9ld%C3%BDri%C3%B0_Pottormur
http://wiki.isir.is/wiki/Skundar_aka_V%C3%A9ld%C3%BDri%C3%B0_Pottormur
http://wiki.isir.is/wiki/Skundar_aka_V%C3%A9ld%C3%BDri%C3%B0_Pottormur

7 RUTR-CS-05001

video4linux driver and sends them to Psyclone that then
sends them to another computer for further processing.
It uses libjpeg to compress the photos. Rob0Vision is a
library that runs inside the Psyclone server (internal
module) and therefore doesn't create any network
traffic.
The functionality and number of initial modules was
determined by simply breaking the low-level problems
of the robot's behavior into intuitive components, taking
operational constraints into account such as the limited-
bandwidth WiFi link and the limited power of the on-
board processor, following the guidelines of the
Constructionist Design Methodology.

FIGURE 2. The modified robot sensing and control
architecture after analysis of the power of the processor
onboard the robot was deemed insufficient to handle the data
traffic of the initial design. Compared to many alternatives,
the use of whiteboards made the change easy, as all interfaces
between modules have already been directly externalized
through messages.

After the design had been implemented and tested we
found that the design created a bottleneck for some of
the necessary processing, compromising the the safe
operation of the robot. More specifically, the
transmission of messages between modules was not
being handled as fast as we had wanted. This result was
not foreseen – we had not tested the system with any
comparable configuration.
Since we had cleanly modularized the functions of the
robot this problem was easily remedied through of one
of the main benefits of using whiteboards during design
and development: We combined the Mouse and Tracker
components into a single component, removing the
need to pass messages between them. As this new
module was written in C++ we also effortlessly
converted it into an internal module in Psyclone
(Picture 2). By doing this we reduced the message
transfer necessary (what was explicit messages before
was now handled via variable passing inside the same
executable). By making it an internal module all
communication with whiteboards is further reduced to
pointer arithmetic – much faster than the prior solution,

which necessarily relied on TCP/IP messages. On the
negative side, however, developers lose the ability to
monitor the communication between the Mouse and
Tracker modules at runtime. Also, raw Mouse data is
lost from the system.
Whiteboards are also being used in a nation-wide
“Garage A.I.” movement.20 Among these is the
construction of a robot with an on-board motherboard
with WiFi. It is being used to stream data from a
microphone, camera and computer mice, and integrate
this with motion control, navigation and speech output.
Whiteboards have also been evaluated in a comparison
to the CAVIAR computer vision architecture, with
positive results (List et al. 2005). Mixing binary streams
and messages freely makes it significantly easier to
build computer vision systems than with more
monolithic approaches.
We have incorporated whiteboards into an integrated
framework (Thórisson 2005) that we are currently using
for various projects at Reykjavík University. One
involves the integration of speech recognition and
synthesis and agents inhabiting a virtual world. The
components are written in various languages. The use of
whiteboard constructs significantly simplifies
connecting them together into a larger system. The use
of semantically tagged messages and streams is proving
to be a very powerful mechanism, especially for the
A.I. parts of the applications.

Conclusion
We have presented an updated version of scheduling
blackboards called whiteboards. Whiteboards address
several deficiencies of earlier blackboard systems,
while also simplifying their functionality.
The whiteboards allow a level of modularity in the
construction of complex systems that is unmatched by
most other approaches; we believe that increased
modularity – even coarse-grained modularity – in
current A.I. efforts could help the field tremendously by
allowing people to integrate each others' work more
easily. Blackboards in general, and whiteboards in
particular, can play a role in facilitating this. The kind
of modularity supported by whiteboards does not
impose a particular school of thought on the
architectures that can be built with it. There is for
example nothing in the nature of whiteboards that
prevents them from being used in behavior-based A.I.
(c.f. Brooks 1991), “good old fashioned” A.I., and
hybrid systems. Whiteboards embody a tried and tested
approach to software development. They present a
structured way of thinking about the elements of a
system and their interactions that makes them more
explicit than most other approaches.
For this reason interface standardization for modules is
important. Among the interface issues, standardizing
message format is key, along with creation of message
type ontologies. An effort is already underway towards
this – a specification called OpenAIR.21 With its lean
yet relatively complete message and routing
20 http://ailab.ru.is/projects/garageai

8 RUTR-CS-05001

specification, OpenAIR provides uniformity in message
APIs, including temporality, and may be used across
various A.I. efforts.
The small footprint and overhead of whiteboards, which
they owe mostly to the simplicity of their specification,
also makes them attractive to employ, even in
embedded systems.
Conceptual clarity of the routing model and ease of use
are key components for wide adoption of any
specification. We believe that whiteboards meet these
needs and we hope to see others starting to use
modularity and whiteboards to facilitate collaboration
and build larger A.I. systems that come closer to
representing the complexity found in intelligent systems
in nature.

Acknowledgments
The authors would like to thank the members of
MINDMAKERS.ORG for their contributions to the
OpenAIR specification and Sigrun Gunnhildardottir for
the illustrations of Skundar. Thanks also to
Communicative Machines Inc. for the free version of
Psyclone, which can be found on the Mindmakers
Website.

References
Adler, R. (1992). Blackboard Systems. In S. C. Shapiro
(ed.), The Encyclopedia of Artificial Intelligence, 2nd
ed., 110-116. New York, NY: Wiley Interscience.

Austin, J. L. (1962). How to Do Things With Words.
Cambridge: Harvard University Press.

Baldoni, R., M. Contenti, A. Virgillito (2003). The
Evolution of Publish/Subscribe Communication
Systems. Future Directions of Distributed Computing.
Springer Verlag LNCS Vol. 2584.

Berners-Lee, T., J. Hendler, O. Lassila (2001). The
Semantic Web. Scientific American, May.

Brooks, R. A. (1991). Intelligence without reason.
Proceedings of the 1991 International Joint Conference
on Artificial Intelligence, Sydney, 569-595.

Corkill, D. D., K. Q. Gallagher, P. M. Johnson (1987).
Achieving Flexibility, Efficiency, and Generality in
Blackboard Architectures. Proceedings of the Sixth
National Conference on A.I., Seattle, Washington.

Dodhiawala, R. T. 1989. Blackboard Systems in Real-
Time Problem Solving. In Jagannathan, V., Dodhiawala,
R. & Baum, L. S. (eds.), Blackboard Architectures and
Applications, 181-191. Boston: Academic Press, Inc.

Engelmore, R., and A. Morgan, eds. (1986). Blackboard
Systems. Reading, Mass.: Addison-Wesley.

21 http://www.mindmakers.org/openair

Erman, L. D., F. Hayes-Roth, V. R. Lesser, D. R. Reddy
(1980). The Hearsay-II Speech-Understanding System:
Integrating Knowledge to Resolve Uncertainty. ACM
Computer Surveys, 12, 213-253.

Erman, L. D., P. E. London, S. F. Fickas, (1981). The
Design and an Example of Use of HEARSAY-III.
Proceedings of the Seventh International Joint
Conference on Artificial Intelligence, Vancouver, BC,
409-415.

Fink, G. A., Jungclaus, N., Kummer, F., Ritter, H.,
Sagerer, G. (1996). A Distributed System for Integrated
Speech and Image Understanding. International
Symposium on Artificial Intelligence, 117-126, Cancun,
Mexico.

Fink, G. A., N. Jungclaus, H. Ritter, G. Saegerer (1995).
A Communication Framework for Heterogeneous
Distributed Pattern Analysis. International Conference
on Algorithms and Architectures for Parallel
Processing, 881-890, Brisbane, Australia.

Greenhalgh, C. (2002). EQUIP: A Software Platform
for Distributed Interactive Systems. Technical Report
Equator-02-002, University of Nottingham.

Hayes-Roth, B. (1984). BB1: An Architecture for
Blackboard Systems that Control, Explain, and Learn
about Their Own Behavior. Technical Report HPP-84-
16, Stanford University, Stanford, California.

Johnson, W. L., S. Marsella, N. Mote, M. Si, H.
Vilhjálmsson, S. Wu (2004). Balanced Perception and
Action in the Tactical Language Training System.
Workshop on Embodied Conversational Agents:
Balanced Perception & Action, July 20th, 18-25.
AAMAS 2004: The Third International Joint
Conference on Autonomous Agents & Multi Agent
Systems, New York, July 19-23.

List, T., J. Bins, R. B. Fisher, D. Tweed, K. R.
Thórisson (2005). Two Approaches to a Plug-and-Play
Vision Architecture, CAVIAR & Psyclone. In K. R.
Thórisson, H. Vilhjalmsson & S. Marsela (Eds.), AAAI-
05 Workshop on Modular Construction of Human-Like
Intelligence, Pittsburgh, PA, July 10. AAAI Technical
Report WS-05-08, pp. 16-23.

Martin, D., Cheyer, A., & Moran, D. (1999). The Open
Agent Architecture: A Framework for Building
Distributed Software Systems. Applied Artificial
Intelligence, 13(1-2), 91-128.

Martinho, Paiva, C. A. & Gomes, M. R. (2000).
Emotions for a Motion: Rapid Development of
Believable Pathematic Agents in Intelligent Virtual
Environments. Applied Artificial Intelligence, 14(1),
33-68.

Maxwell, B. A., L. A. Meeden, N. S. Addo, P. Dickson,
N. Fairfield, N. Johnson, E. G. Jones, S. Kim, P. Malla,
M. Murphy, B. Rutter, E. Silk (2001). REAPER: A

9 RUTR-CS-05001

Reflexive Architecture for Perceptive Agents. A.I.
Magazine, spring, 53-66.

Mayfield, J., Labrou, Y., and Finin. T. 1995. Evaluation
of KQML as an agent communication language. In M.
Wooldridge, J. P. Muller, and M. Tambe, editors,
Intelligent Agents II – Proceedings of the Second
International Workshop on Agent Theories,
Architectures, and Languages (ATAL'95), held as part
of IJCAI '95, Montreal, Canada, August.

Pagello, E., E. Mengegatti, A. Bredenfel, P. Costa, T.
Christaller, A. Jacoff, D. Polani, M. Riedmiller, A.
Saffiotti, E. Sklar, T. Tomoichi (2004). RoboCup-2003:
New Scientific and Technical Advances. A.I. Magazine,
25(2), 81-98. AAAI. Menlo Park, CA: AAAI Press.

Searle, J. R. (1969). Speech Acts: An Essay in the
Philosophy of Language. Cambridge, UK: Cambridge
University Press.

Selfridge, O. (1959). Pandemonium: A Paradigm for
Learning. Proceedings of Symposium on the
Mechanization of Thought Processes, 511-529.

Thórisson, K. R., H. Benko, A. Arnold, D. Abramov, S.
Maskey, A. Vaseekaran (2004). Constructionist Design
Methodology for Interactive Intelligences. A.I.
Magazine, 25(4), 70-93. Menlo Park, CA: American
Association for Artificial Intelligence.

Thórisson, K. R., C. C. Pennock, T. List, J. DiPirro
(2004). Artificial Intelligence in Computer Graphics: A
Constructionist Approach. Computer Graphics
Quarterly, 38(1), 26-30, New York, February.

Thórisson, K. R., T. List, J. DiPirro, C. Pennock (2005).
A Framework for A.I. Integration. Reykjavik University
Department of Computer Science Technical Report,
RUTR-CS05001.

Zadeh, L. A. (1994). Fuzzy logic, neural networks and
soft computing. Comm. ACM, Vol. 37, No. 3, pp. 77–84.

