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Mary Felkin, Jérémy Terrien and Kristinn R. Thórisson
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Abstract. The importance of laughter in human relationships can hardly
be contested; its importance in communication has been pointed out by
a number of authors. Like some of those working on analysis of audio
data before us, the goal of our work is to be able to classify many types
of non-speech vocal sounds. The approach we use in this work relies upon
machine learning techiques, as it could take centuries to hand-code algo-
rithms for detecting laughter and other sounds, which have high variabil-
ity both between cultures and between individuals. Here we describe our
application of C4.5 to find the onset and offset of laughter using single-
speaker audio recordings. Prior efforts using machine learning have not,
to our knowledge, used C4.5. We got the best results so far on noisy1

data as compared to the literature.

Keywords: Sentiment analysis, Speech processing, Spoken language process-
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1 Introduction

Unlike much of the prior work on laughter detection our ultimate aim is not
simply the detection of laughter but the use of this information – by a robot or
virtual humanoid – to produce the appropriate conversational responses in real-
time dialogue with people. Such a system could also be used to improve speech
recognition by eliminating periods of non-speech sound. As false positives consti-
tute a significant portion of speech recognition errors, a high-quality solution in
this respect could be expected to improve speech recognition considerably. Many
prior papers on automatic laughter detection leave out details on the average
duration of the laughter and only mention the length of the full recordings con-
taining (one or more bursts of) laughter – these presumably being the recordings
that got them the best results. In our corpus laughter duration of 2.5 s produced
the highest accuracy. The paper is organized as follows: After a review of related
work we describe the signal processing algorithms employed and show how cor-
related their output is. Then we describe the results from training C4.5 on the
corpus and present the results of applying it to new data.

1 By “noisy” we mean the sound tracks used were raw recordings, most of which in-
cluded background noises such as people talking further away from the microphone
or objects being moved. This noise was however never as loud as the primary (in-
tended) recording.
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2 Related Work

A number of papers have been published on the application of learning for de-
tecting the difference between speech and laughter in audio recordings [9] [15]
[5] [14] [7]. The work differs considerably on several dimensions including the
cleanliness of data, single-person versus multiple-person soundtracks, as well as
the learning methods used. Reasonable results of automatic recognition have
been reported using support vector machines [15], [5], Hidden Markov Models
[9] [10], artificial neural nets [7] [15] and Gaussian Mixture Models [15], [14].
The studies, however, pre-process data in many ways, from manual isolation
of laughter versus non-laughter segments, to completely free-form multi-party
recordings. Some use clean data while others use real-life recordings (as we did).
The results are therefore not easily comparable. Among the methods used for
pre-processing are mel-frequency cepstral coefficients [13] and Perceptual Linear
Prediction features [3]. The wide spectrum of laugh-related studies, of which
these are but a small sample, encompass, without being restricted to, pychol-
ogy, cognitive science and philosophy as well as acoustics, giving to our topic an
important place in any field related to intelligence and to communication.

3 Data Collection

Sound samples were collected through a user-friendly interface; subjects were
volunteers from Reykjavik University’s staff and student pool. Recordings were
done in a relatively noisy environment (people talking and moving in the back-
ground, and often people hanging around while the recording was achieved). We
used no noise cancellation mechanisms. A human listener could however clearly
distinguish between the background noise and the primary recording, the latter
being louder. We use energy-based descriptors so our method could not function
if the background noise was as loud as the primary recording.

The volunteers were asked to record 20 samples, each lasting 3 seconds:

– 5 samples of him/herself laughing
– 5 samples of him/herself speaking spontaneously
– 5 samples of him/herself reading aloud
– 5 samples of him/herself making other sounds (OS)

The other noises recorded included humming, coughing, singing, animal sound
imitations, etc. One volunteer thought that rythmic hand clapping and drum-
ming could also be confused with laughter so he was allowed to produce such
non-vocal sounds.

The instructions to each participant were to “Please laugh into the micro-
phone. Every sample should last at least three seconds.” For the non-laughter
sounds we instructed them that these could “include anything you want. We
would appreciate it if you would try to give us samples which you think may
be confused with laughter by a machine but not by a human. For example, if
you think the most discriminant criteria would be short and rythmic bursts of
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sound, you could cough. If you think phonemes are important, you could say
“ha ha ha” in a very sad tone of voice, etc.”.

The University cosmopolitan environment allowed us to record speech and
reading in several different languages, the volunteers were encouraged to record
themselves speaking and reading in their native languages.

4 Signal Processing Using CUMSUM

We assume that each phoneme can be defined as a stationary segment in the
recorded sound samples. Several algorithms have been developed to extract the
stationary segments composing a signal of interest. In a first approach, we chose a
segmentation algorithm based on auto-regressive (AR) modeling, the CUMSUM
(CUMulated SUMs) algorithm [6]. The pupose is classification according to the
genre of the movie (science fiction, western, drama, etc.).

In a change detection context the problem consists of identifying the moment
when the current hypothesis starts giving an inadequate interpretation of the
signal, so another hypothesis (already existing or created on the fly) become
the relevant one. An optimal method consists in recursive calculation, at every
time step, of the logarithm of the likelihood ratio Λ(xt). This is done by the
CUMSUM algorithm [1]:

H0 and H1 are two hypothesis
H0 : xt, t ∈]0, k] where xt follows a probability density f0

H1 : xt, t ∈]k, n] where xt follows a probability density f1

The likelihood ratio Λ(xt) is defined as the ratio of the probability densities
of x under both hypothesis (equation 1).

Λ(xt) =
f1(xt)

f0(xt)
(1)

The instant k of change from one hypothesis to the other can then be calcu-
lated according to [1], [4] (equations 2 and 3).

K = inf{n ≥ 1 : max

t∑

j=1

logΛ(xj) ≥ λ0}; 1 ≤ t ≤ n (2)

K = inf{n ≥ 1 : Sn − min St ≥ λ0}; 1 ≤ t ≤ n (3)

Where St is the cumulated sum at time t, defined according to equation 4.

St =
n∑

t=1

logΛ(xt); S0 = 0 (4)

In the general case, with several hypotheses, the detection of the instant of
change k is achieved through the calculation of several cumulated sums between
the current hypothesis Hc and each hypothesis i of the N hypotheses already
identified.
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We define a detection function D(t, i) = max S(n, i) − S(t, i) for i ∈
{1, ..., N}. This function is then compared to a threshold λ in order to determine
the instant of change between both hypotheses.

In several instances the distribution parameters of random variable x, under
the different hypothesis, are unknown. As a workaround, the likelihood ratios
used by CUMSUM are set according to either signal parameters obtained from
AR modeling or the decomposition of the signal by wavelet transform [6]. In this
paper we used the AR modeling approach.

When the different samples xi of a signal are correlated, these samples can
be expressed by an AR model (equation 5).

xi +

q∑

k=1

akxi−k = ǫi; ǫi ∈ N(0, σ) (5)

Where :

ǫi is the prediction error
a1, ..., ak are the parameters of the AR model
q is the order of the model

If x follows a Gaussian distribution the prediction errors ǫi also follow a
Gaussian distribution and are not correlated. In this case the logarithm of the
likelihood ratio of the prediction errors Λ(ǫi) can be expressed under H0 and H1

hypothesis as in [6] (equation 6).

log(Λ(ǫi)) =
1

2
log

σ2
0

σ2
1

+
1

2
(
(ǫi,0)

2

σ2
0

−
(ǫi,1)

2

σ2
1

) (6)

Where :

σ2
j is the variance of the prediction error under the jth hypothesis

ǫi,j is the prediction error under the jth hypothesis

When several hypotheses exist, the likelihood ratio between the current hy-
pothesis Hc and every already identified hypothesis is calculated. The cumulated
sum S(n, i) at time n between the current hypothesis and the ith hypothesis is
calculated according to equation 7.

S(n, i) = S(n − 1, i) +
1

2
log

σ2
c

σ2
i

+
1

2
(
(ǫt,c)

2

σ2
c

−
(ǫt,i)

2

σ2
i

) (7)

The detection function D(t, i) is defined:
D(t, i) = max S(t, i) - S(n, i)for 1 ≤ t ≤ n

The instant of change is detected whenever one of the M detection functions
reaches a λ0 threshold.

As a final pre-processing step, we detected hypothesis corresponding to si-
lence (only background noise is heard) by energy thresholding of all hypothesis.
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5 Attribute Construction for Chunks

To separate audio segments from silence segments we applied an energy threshold
on each detected stationary segment. We chose to keep all segments that repre-
sent 80% of the energy of the original signal. All non-selected segments where
considered silence and discarded from further analysis. All contiguous phonemes
where then mixed to form a burst.

For each burst Wi we first computed their fundamental frequency, defined
as the frequency of maximal energy in the burst’s Fourier power spectrum. The
power spectrum of the burst i (Pxxi(f)) was estimated by averaged modified
periodogram. We used a Hanning window of one second duration with an overlap
of 75%. The fundamental frequency Fi and the associated relative energy Ereli
are then obtained according to equations 8 and 9.

Fi = argmaxf Pxxi (f) (8)

Ereli =
max (Pxxi(f))
∑Fs

2

f=0
Pxxi (f)

(9)

where Fs is the sampling frequency.
We also considered the absolute energy Ei, the length Li and the time instant

Ti of each burst. Their use can be seen in the decision tree.

5.1 Burst Series Parametrisation

A burst series is defined as a succession of n sound burst bursts. The number of
bursts is not constant from one series to another. Our approach to pre-processing
for audio stream segmentation was based on the following hypotheses:

1. F. Maximum energy frequency: The fundamental frequency of each audio
burst is constant or slowly varying. No supposition has been made concern-
ing the value of this parameter since it could vary according to the gender of
the speaker (we performed no normalisation to remove these gender-related
differences in vocal tract length). It could also vary according to the partic-
ular phoneme pronounced during the laugh, i.e.“hi hi hi” or “ho ho ho”, or,
as some native Greenanders’ laugh, “t t t”.

2. Erel. Relative energy of the maximum: The relative energy of the funda-
mental frequency of each burst is constant or slowly varying. This parameter
should be high due to the low complexity of the phoneme.

3. E. Total energy of the burst: The energy of each burst is slowly decreasing.
The laugh is supposed to be involuntary and thus no control of the respiration
to maintain the voice level appears. This is, as we will see, a useful criterion
because when a human speaks a sentence, he or she is supposed to control
the volume of each burst in order to maintain good intelligibility and this
control for the most part only breaks down when expressing strong emotions.

4. L. Instant of the middle of the burst: The length of each burst is low and
constant due to the repetition of the same simple phoneme or group of such.
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5. T. Length of the burst: The difference between consecutive burst occurence
instants is constant or slowly varying. A laugh is considered as an emission
of simple phonemes at a given frequency. No supposition concerning the
frequency was done since it could vary strongly from one speaker to the
other. At the opposite, a non laughing utterance is considered as a “random”
phoneme emission.

6. Te. Total energy of the spectre’s summit: Same as 2. but not normalised
according to the total energy of the burst.

To differentiate records corresponding to a laugh or a non-laugh utterance,
we characterised each burst series by the regularity of each parameter. This
approach allowed us to be independent of the number of bursts in the recorded
burst series. For the parameters Fi, Ereli, Ei and Li, we evaluated the median
of the absolute instantaneous difference of the parameters. For the parameter
Ti, we evaluated the standard deviation of the instantaneous emission period,
i.e. Ti+1 − Ti.

5.2 Machine Learning Tools

No single descriptor on it’s own is sufficient to differentiate laughter vs. non
laughter samples. This indicates that there is no trivial method to differenciate
laughter from non-laughter samples, using our descriptors, and supervised clas-
sification techniques are required. We solved this problem with the decision tree
inducer C4.5 [11] [12].
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Fig.1: The complete algorithm
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6 Results

In the following we use 10 − folds cross validation2. 3 seconds is too long: In
many samples, people had not been able to laugh during 3 seconds, so the tail
of the sound file is noise.

6.1 Laugh detection

The first column below indicates the length of the samples used in the cor-
responding experiment as a percentage of the 3 seconds total length. It also
happens with spontaneous speech and other noises. As can be seen below the
presence or absence of these other noises (OS means “Other Sounds”) does not
have a great impact upon the accuracy (Acc).

Length Acc. with OS Acc. without OS
75% 88.6% 86.4%
80% 88.1% 88.8%
85% 89.5% 89.6%
90% 86.1% 85.2%
95% 84.4% 87.6%
100% 86.4% 85.2%

Table 1: Results according to relative sample length

6.2 Multi-class values experiments

In two further experiments, we tested the ability of our system to differentiate
between the three non-laughter types. In the first experiment, we ran our classi-
fier on a database where the samples were labeled according to 3 possible values:
Laughter, Reading and Speech. We call this the ternary experiment. The ”Other
sounds” samples were excluded. In the second one all samples were included and
so the class had four possible values, laughter, Reading, Speech and Others. We
call this the quaternary experiment. It should be noted that during the first ex-
periment we were only trying to distinguish between laughter and non-laughter
and not between the different kinds of non-laughter. For comparison purposes,
all multi-class-valued results were transformed into their binary equivalent ac-
cording to equation 10 [2] where N is the number of possible class values, accN

the accuracy obtained on the N class values problem and acc2 the equivalent
binary accuracy.

2 Cross-validation is the practice of partitioning a set of data into subsets to perform
the analysis on a single subset while the others are used for training the classification
algorithm. This operation is repeated as many times as there are partitions, which
means we train on 90 of the samples and test on the remaining 10. We do this
10 times and average the results. In this way, our accuracy is a good (if slightly
pessimistic [8]) estimator of what our accuracy would be upon unknown examples.
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acc2 = acc
log(2)
log(N)

N (10)

.
In fig.2, the X axis is the lengh of the samples (as a percentage of the full

3 seconds length) and the Y axis is the classification accuracy, using 10-folds
cross-validation on the given dataset. The lines are colour-coded thus:

Dark blue is the first (binary) experiment
Light blue is the ternary experiment
Dotted green is the quaternary experiment

It shows our system, designed specifically for laughter detection, performs
poorly on other tasks. In particular, our system is not meant to differentiate
between Reading and Speech.

Fig. 2. Comparisons: dark blue is binary, light blue is ternary and dotted green is
quaternary experiment

7 Conclusions

Laughter is important. Among all possible non-verbal sounds, laughing and cry-
ing are these which carry the strongest emotional-state related information.
Their utterance predates language skills acquisition by newborn babies. Laugh-
ter is typically human, with the possible inclusion of some other primates. In
the framework of inter-adult communication, laughter could be the non-verbal
sound which is the most meaningfull while still being relatively common. C4.5
is well known as being a robust multi-purpose algorithm. What has been de-
signed specifically for the purpose of recognising laughter are our preprocessing
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formulas and we have shown that our preprocessing is appropriate for laugh-
ter detection, but useless for other tasks such as distinguishing between reading
aloud and spontaneous speech. We have shown that we do better than the state
of the art on audio data, and we are now working on optimising our algorithm for
real-time uses. One approach is to experiment with fewer descriptors to reduce
computation cost.
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