
Achieving Artificial General Intelligence Through Peewee Granularity

Kristinn R. Thórisson & Eric Nivel

Center for the Analysis and Design of Intelligent Agents / School of Computer Science
Reykjavik University, Kringlunni 1, 103 Reykjavik, Iceland

{thorisson, eric}@ru.is

Abstract
The general intelligence of any autonomous system must in
large part be measured by its ability to automatically learn
new skills and integrate these with prior skills. Cognitive
architectures addressing these topics are few and far
between – possibly because of their difficulty. We argue that
architectures capable of diverse skill acquisition and
integration, and real-time management of these, require an
approach of modularization that goes well beyond the
current practices, leading to a class of architectures we refer
to as peewee-granule systems. The building blocks
(modules) in such systems have simple operational
semantics and result in architectures that are heterogeneous
at the cognitive level but homogeneous at the computational
level.

Introduction
Looking at the software architecture of present large-scale
AI systems reveals a rather clear picture: A majority is
built on principles of standard industrial software
component methodologies. As we have argued elsewhere
[7,9] such methodologies do not support sufficient
architectural flexibility when it comes to building
intelligent systems, in large part because they do not
support well incremental expansion or automated
architectural construction. We have developed a method
for intelligent system construction, Constructionist Design
Methodology (CDM) [10], that produces cognitive
architectures exhibiting greater flexibly in expansion than
typical of architectures of similar size [8] and better
support for system integration [5]. In the last few years we
have been moving towards architectures built out of ever-
smaller components, or modules. Here we discuss what we
see as a general trend towards “peewee”-granule systems –
architectures with very small-grain components – and why
we see this as a promising direction for artificial general
intelligence.

Medium Granularity in Ymir / CDM
Ymir is a cognitive proto-architecture [11] from which the
CDM was originally derived. One of Ymir's advantages is
its addressing multiple skill integration in a realtime-
capable system with multimodal output generation. Over
the last decade the principles of Ymir and CDM have been

used to build several relatively large systems including a
multimodal realtime interactive character, a realtime
dialogue system [2] and a cognitive architecture for the
Honda ASIMO robot [5]. These systems, all based on the
idea of a fairly large set of small functional units (called
modules, each typically less than 100 lines of code)
interacting via blackboards, were developed incrementally
according to the development steps set forth in the CDM.
In Ymir modules are loosely coupled through message
passing; messages are semantically self-describing (the
content of modules' inputs and outputs is explicit in the
message types). Typically a module's function lies at the
cognitive level; any psychologically distinguishable
behavior (e.g. taking turns in dialogue, reaching to grasp an
object, etc.) is done through cooperation/interaction of 50-
80 such modules. Ymir postulates three priority layers of
modules, each layer having a particular upper bound on the
perception-action loop time: The Reactive Layer with ~
100 - 400 msecs; the Process Control Layer with ~ 400 -
2000 msecs; and the Content Layer from 2k msecs and up.
Ideally, modules are stateless (state is completely contained
in the historical flow of messages); however, we have
found that it is difficult to stay away from saving state in
some subset of a system's modules.

The important benefits of Ymir's CDM principles and
medium-granularity include better scaling of performance,
increased breadth and more organizational flexibility at
runtime, as reported for numerous systems (e.g.
[2,5,7,8,10]). While recent work has shown Ymir-like
architectures to be able to learn dynamically at runtime [2],
runtime changes in Ymir-style architectures at present do
not involve new functions (in terms of new modules); they
are limited to changes in the behaviors of, and interactions
between, already-existing modules. If we want to achieve
complex, evolving systems that can self-improve
significantly over time, however, automatic synthesis of
new components must be made possible. Automatic
management of self-improvement – via reorganization of
the architecture itself – can only be achieved by giving the
system instructions on how to measure its own
performance and providing it with methods for introducing
architectural changes to improve its own performance on
those measures. Such models of self are very difficult to
achieve in systems built with known software

methodologies – as well as the CDM. This leads us to the
importance of computational homogeneity.

Towards Peewee Granularity
As shown with Ymir's priority layers [11] (see also [6]) the
role of structures is to implement observation/control
feedback loops; the scale of complexity levels is thus
closely linked to the scale of response times: we need to
exert a fine control over the process synthesis to tune
accurately its constituents (sub-structures and sub-
processes) at any relevant scale. Control accuracy over
processes and process construction can be achieved only if
(a) the granularity of program interaction is as fine as the
size of the smallest model and (b) the execution time of
models is much lower than the program interaction the
models intend to control. For systems with shortest
cognitive response times (typically 250-500 msecs) this
may mean grains of no longer than a few CPU cycles long.

Ikon Flux is a proto-architecture for building fully
autonomous systems [3]. The details of Ikon Flux have
been described elsewhere; here we will discuss two of its
most salient traits, computational homogeneity and peewee
granularity (very small modules). Ikon Flux has been
designed to build systems that embody a continuous
process of architectural (re-)synthesis. Such systems are
engaged – in realtime – in observation/control loops to
steer the evolution of their own structures and processes
over short and long time horizons. In Ikon Flux, structures
and processes result from a bottom-up synthesis activity
scaffolded by top-down models: it finds its raw material in
low-level axioms (commands from/to sensors/actuators,
programming skills, etc.) while being regulated and
structured by (initially) man-made bootstrap code. As Ikon
Flux systems expand in functionality and scope the models
necessary to control synthesis grow in complexity; to cover
the whole spectrum of a system’s operation they must
encompass both low-level and higher-order structures/
processes. An autonomous system has thus to evolve these
heterogeneous models over time along a quasi-continuous
scale of complexity levels. It is a practical impossibility to
implement an architectural model for each of these levels –
which in most cases cannot be known in advance.
However, providing a uniform model that can self-improve
is a challenge since the operational semantics grow
significantly in complexity with the atomic set of system
operations (module types). This can be solved by
employing a homogenous computational substrate
consisting of a small amount of atomic operational
elements, each of peewee size. In Ikon Flux these are
rewrite terms. Systems built in Ikon Flux grow massive
amounts of (stateless) concurrent rewriting programs
organized to allow composition of structures/processes of
arbitrary size and architecture. Other research has
acknowledged the need for computational homogeneity
(cf. [1,4]), albeit to a lesser extent than Ikon Flux.

Architectures like Ymir [2,5,11] and others [1,4] have
shown the benefits of medium-size granularity. While these
systems can be expanded in performance, such expansion
tends to be linear, due to an operational semantics
complexity barrier. Ikon Flux presents a next step towards
massive amounts of small components, embodying
hundreds of thousands of peewee-size modules [3]. Yet
Ikon Flux demonstrates cognitive heterogeneity on top of
this computationally homogeneous substrate. As a result,
systems built in Ikon Flux exhibit deep learning of new
skills and integration of such skills into an existing
cognitive architecture. We believe peewee granularity is a
promising way to simplify operational semantics and reach
a computational homogeneity that can enable automated
architectural growth – which in itself is a necessary step
towards scaling of cognitive skills exhibited by current
state-of-the-art architectures. Only this way will we move
more quickly towards artificial general intelligence.

References
[1] Cardon A. 2003. Control and Behavior of a Massive Multi-
agent System In W. Truszkowski, C. Rouff, M. Hinchey eds.
WRAC 2002, LNAI 2564, 46-60. Berlin Heidelberg: Springer-
Verlag.
[2] Jonsdottir G.R., Thórisson K.R. and Nivel E. 2008. Learning
Smooth, Human-Like Turntaking in Realtime Dialogue.
Intelligent Virtual Agents (IVA), Tokyo, Japan, September 1-3.
[3] Nivel, E. 2007. Ikon Flux 2.0. Reykjavik University
Department of Computer Science Technical Report RUTR-
CS07006.
[4] Pezzulo G. and Calvi G. 2007. Designing Modular
Architectures in the Framework AKIRA. In Multiagent and Grid
Systems, 3:65-86.
[5] Ng-Thow-Hing V., List T., Thórisson K.R., Lim J., Wormer J.
2007. Design and Evaluation of Communication Middleware in a
Distributed Humanoid Robot Architecture. IROS '07 Workshop
Measures and Procedures for the Evaluation of Robot
Architectures and Middleware. San Diego, California.
[6] Sanz R., López I., Hernández C. 2007. Self-awareness in
Real-time Cognitive Control Architectures. In AI and
Consciousness: Theoretical Foundations and Current
Approaches. AAAI Fall Symposium. Washington, DC.
[7] Thórisson K.R. and Jonsdottir G.R. 2008. A Granular
Architecture for Dynamic Realtime Dialogue. Intelligent Virtual
Agents (IVA), Tokyo, Japan, September 1-3.
[8] Thórisson K.R., Jonsdottir G.R. and Nivel E. 2008. Methods
for Complex Single-Mind Architecture Designs. Proc. AAMAS,
Estoril, Portugal, June.
[9] Thórisson K. R. 2007. Integrated A.I. Systems. Minds &
Machines, 17:11-25.
[10] Thórisson K.R., Benko H., Arnold A., Abramov D., Maskey,
S., Vaseekaran, A. 2004. Constructionist Design Methodology for
Interactive Intelligences. A.I. Magazine, 25(4):77-90.
[11] Thórisson K.R. 1999. A Mind Model for Multimodal
Communicative Creatures and Humanoids. International Journal
of Applied Artificial Intelligence, 13(4-5): 449-486.

