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A b s t r a c t 

Computers and Thought are the two categories 
that together define Artif icial Intelligence as a 
discipline. It is generally accepted that work in 
Art i f icial Intelligence over the last thirty years 
has had a strong influence on aspects of com­
puter architectures. In this paper we also make 
the converse claim; that the state of computer 
architecture has been a strong influence on our 
models of thought. The Von Neumann model of 
computation has lead Arti f icial Intelligence in 
particular directions. Intelligence in biological 
systems is completely different. Recent work in 
behavior­based Art i f ic ial Intelligence has pro­
duced new models of intelligence that are much 
closer in spirit to biological systems. The non­
Von Neumann computational models they use 
share many characteristics with biological com­
putation, 

1 Introduction 
Artif icial Intelligence as a formal discipline has been 
around for a l i t t le over thir ty years. The goals of in­
dividual practitioners vary and change over time. A 
reasonable characterization of the general field is that 
it is intended to make computers do things, that when 
done by people, are described as having indicated intel­
ligence. Winston [ W i n s t o n 84] characterizes the goals 
of Art i f icial Intelligence as both the construction of use­
ful intelligent systems and the understanding of human 
intelligence. 

There is a temptation (often succumbed to) to then go 
ahead and define intelligence, but that does not imme­
diately give a clearly grounded meaning to the field. In 
fact there is danger of deep philosophical regress with no 
recovery. Therefore I prefer to stay wi th a more informal 
notion of intelligence being the sort of stuff that humans 
do, pretty much all the time. 

1.1 App roaches 

Traditional Art i f ic ial Intelligence has tried to tackle the 
problem of building artificially intelligent systems from 
the top down. It tackled intelligence through the notions 
of thought and reason. These are things we only know 
about through introspection. The field has adopted a 

certain modus operandi over the years, which includes a 
particular set of conventions on how the inputs and out­
puts to thought and reasoning are to be handled (e.g., 
the subfield of knowledge representation), and the sorts 
of things that thought and reasoning do (e.g,, planning, 
problem solving, etc.). 1 wi l l argue that these conven­
tions cannot account for large aspects of what goes into 
intelligence. Furthermore, without those aspects the va­
lidity of the traditional Artif icial Intelligence approaches 
comes into question. I wi l l also argue that much of the 
landmark work on thought has been influenced by the 
technological constraints of the available computers, and 
thereafter these consequences have often mistakenly be­
come enshrined as principles, long after the original im­
petus has disappeared. 

From an evolutionary stance, human level intelligence 
did not suddenly leap onto the scene. There were pre­
cursors and foundations throughout the lineage to hu­
mans. Much of this substrate is present in other animals 
today. The study of that substrate may well provide 
constraints on how higher level thought in humans could 
be organized. 

Recently there has been a movement to study intel­
ligence from the bottom up, concentrating on physical 
systems (e.g., mobile robots), situated in the world, au­
tonomously carrying out tasks of various sorts. Some of 
this work is based on engineering from first principles, 
other parts of the work are firmly based on biological in­
spirations. The flavor of this work is quite different from 
that of traditional Art i f icial Intelligence. In fact it sug­
gests that despite our best introspections, traditional Ar­
tificial Intelligence offers solutions to intelligence which 
bear almost no resemblance at all to how biological sys­
tems work. 

There are of course dangers in studying biological sys­
tems too closely. Their design was not highly optimized 
from a global systems point of view. Rather they were 
patched together and adapted from previously working 
systems, in ways which most expeditiously met the latest 
environmental pressures. Perhaps the solutions found for 
much of intelligence are terribly suboptimal. Certainly 
there are many vestigial structures surviving within hu­
mans' and other animals' digestive, skeletal, and mus­
cular systems. One should suppose then that there are 
many vestigial neurological structures, interactions, and 
side effects. Their emulation may be a distraction. 
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1.2 O u t l i n e 

The body of this paper is formed by ivemain sections: 2 
Robots, 3 Computers, 4 Biology, 5 Ideas and 6 Thought. 
The theme of the paper is how computers and thought 
have be intimately intertwined in the development of Ar­
tificial Intelligence, how those connections may have led 
the field astray, how biological examples of intelligence 
are quite different from the models used by Artif icial 
Intelligence, and how recent new approaches point to 
another path for both computers and thought. 

The new approaches that have been developed re­
cently for Artif icial Intelligence arose out of work with 
mobile robots. Section 2 (Robots) briefly outlines the 
context within which this work arose, and discusses some 
key realizations made by the researchers involved. 

Section 3 (Computers) traces the development of the 
foundational ideas for Art i f icial Intelligence, and how 
they were intimately linked to the technology avail­
able for computation. Neither situatedness nor embod­
iment were easy to include on the original agenda, al­
though their importance was recognized by many early 
researchers­ The early framework wi th its emphasis on 
search has remained dominant, and has led to solutions 
that seem important within the closed world of Artif icial 
Intelligencej but which perhaps are not very relevant to 
practical applications. The field of Cybernetics with a 
heritage of very different tools from the early digital com­
puter, provides an interesting counterpoint, confirming 
the hypothesis that models of thought are intimately tied 
to the available models of computation. 

Section 4 (Biology) is a brief overview of recent devel­
opments in the understanding of biological intelligence. 
It covers material from ethology, psychology, and neu­
roscience. Of necessity it is not comprehensive, but it 
is sufficient to demonstrate that the intelligence of bio­
logical systems is organized in ways quite different from 
traditional views of Art i f icial Intelligence. 

Section 5 (Ideas) introduces the two cornerstones to 
the new approach to Artif icial Intelligence, situatedness 
and embodiment, and discusses both intelligence and 
emergence in these contexts. 

The last major section, 6 (Thought), outlines some 
details of the approach of my group at M I T to build­
ing complete situated, embodied, artificially intelligent 
robots. This approach shares much more heritage with 
biological systems than with what is usually called Ar­
tificial Intelligence. 

2 Robots 
There has been a scattering of work with mobile robots 
within the Artif icial Intelligence community over the 
years. Shakey from the late sixties at SRI (see [Ni ls ­
son 84] for a collection of original reports) is perhaps 
the best known, but other significant efforts include the 
CART ( [Moravec 82]) at Stanford and Hilare ( [ G i r a l t , 
Cha t i l a a n d Vaisset 84]) in Toulouse. 

All these systems used offboard computers (and thus 
they could be the largest most powerful computers avail­
able at the t ime and place), and all operated in mostly1 

1In the case of Shakey, experiments included the existence 
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static environments. A l l of these robots operated in en­
vironments that had been specially engineered for them 
to some degree at least. They all sensed the world and 
tried to build two or three dimensional world models of 
i t . Then, in each case, a planner could ignore the ac­
tual world, and operate in the model to produce a plan 
of action for the robot to achieve whatever goal it had 
been given. In all three of these robots, the generated 
plans included at least a nominal path through the world 
model along which it was intended that the robot should 
move. 

Despite the simplifications (static, engineered environ­
ments, and the most powerful available computers) all 
these robots operated excruciatingly slowly. Much of the 
processing time was consumed in the perceptual end of 
the systems and in building the world models. Relatively 
l i tt le computation was used in planning and acting. 

An important effect of this work was to provide a 
framework within which other researchers could operate 
without testing their ideas on real robots, and even with­
out having any access to real robot data. We wil l call 
this framework, the sense­modeI­p!an­act framework, or 
SMPA for short. See section 3.6 for more details of how 
the SMPA framework influenced the manner in which 
robots were built over the following years, and how those 
robots in turn imposed restrictions on the ways in which 
intelligent control programs could be bui l t for them. 

There was at least an implicit assumption in this early 
work with mobile robots, that once the simpler case of 
operating in a static environment had been solved, then 
the more difficult case of an actively dynamic environ­
ment could be tackled. None of these early SMPA sys­
tems were ever extended in this way. 

Around 1984, a number of people started to worry 
about the more general problem of organizing intelli­
gence. There was a requirement that intelligence be 
reactive to dynamic aspects of the environment, that 
a mobile robot operate on time scales similar to those 
of animals and humans, and that intelligence be able 
to generate robust behavior in the face of uncertain sen­
sors, an unpredicted environment, and a changing world. 
Some of the key realizations about the organization of 
intelligence were as follows: 

• Most of what people do in their day to day lives 
is not problem­solving or planning, but rather it is 
routine activity in a relatively benign, but certainly 
dynamic, world. Furthermore the representations 
an agent uses of objects in the world need not rely 
on a semantic correspondence with symbols that the 
agent possesses, but rather can be defined through 
interactions of the agent with the world. Agents 

of a gremlin who would secretly come and alter the environ­
ment by moving & block to a different location. However, 
this would usually happen only once, Bay, in a many hour 
run, and the robot would not perceive the dynamic act, but 
rather might later notice a changed world if the change was 
directly relevant to the particular subtask it was executing. 
In the case of the CART, the only dynamic aspect of the 
world was the change in sun angle over long time periods, 
and this in fact caused the robot to fail as its position esti­
mation scheme was confused by the moving shadows. 



based on these ideas have achieved interesting per­
formance levels and were built from combinatorial 
circuits plus a l i t t le t iming circuitry ( [Ag re and 
C h a p m a n 87] , [Ag re a n d C h a p m a n 90]). 

• An observer can legitimately talk about an agent's 
beliefs and goals, even though the agent need not 
manipulate symbolic data structures at run time. A 
formal grounding in semantics used for the agent's 
design can be compiled away. Agents based on these 
ideas have achieved interesting performance levels 
and were built from combinatorial circuits plus a 
l i t t le t iming circuitry ( [Rosenschem a n d K a e l ­
b l i ng 86], [Kae lb l i ng and Rosenschein 90]). 

• In order to really test ideas of intelligence it is im­
portant to build complete agents which operate in 
dynamic environments using real sensors. Internal 
world models which are complete representations of 
the external environment, besides being impossible 
to obtain, are not at all necessary for agents to act 
in a competent manner. Many of the actions of 
an agent are quite separable­—coherent intelligence 
can emerge from subcomponents interacting in the 
world, Agents based on these ideas have achieved 
interesting performance levels and were buil t from 
combinatorial circuits plus a l itt le t iming circuitry 
( [Brooks 86], [B rooks 90b] , [Brooks 91a]). 

A large number of others have also contributed to the 
approach. [Maes 90a] is the most representative collec­
tion. 

There is no generally accepted term to describe this 
style of work. It has sometimes been characterized by 
the oxymoron reactive planning. I have variously used 
Robot Beings [B rooks a n d F l y n n 89] and Artificial 
Creatures [B rooks 90b] . Related work on non­mobile, 
but nevertheless active systems has been called active vi­
sion, or animate vision [Ba l l a rd 89]. Some workers re­
fer to their beings, or creatures, as agents; unfortunately 
that term is also used by others to refer to somewhat 
independent components of intelligence within a single 
physical creature (e.g,, the agencies of [M insky 86]), 
Sometimes the approach is called behavior­based as the 
computational components tend to be direct behavior 
producing modules2. For the remainder of this paper, 
we wil l simply call the entities of discussion 'robots* or 
'behavior­based robots'. 

There are a number of key aspects characterizing this 
style of work. 

• [Si tuatedness] The robots are situated in the 
world—they do not deal with abstract descriptions, 
but with the here and now of the world directly in­
fluencing the behavior of the system. 

• [ E m b o d i m e n t ] The robots have bodies and expe­
rience the world directly—their actions are part of 
a dynamic with the world and have immediate feed­
back on their own sensations. 

Unfortunately this clashes a little with the meaning of 
behavior as used by ethologists as an observed interaction 
with the world, rather than as something explicitly generated. 

• [ Inte l l igence] They are observed to be intelligent— 
but the source of intelligence is not limited to just 
the computational engine. It also comes from the 
situation in the world, the signal transformations 
within the sensors, and the physical coupling of the 
robot wi th the world. 

• [Emergence] The intelligence of the system 
emerges from the system's interactions with the 
world and from sometimes indirect interactions be­
tween its components—it is sometimes hard to point 
to one event or place within the system and say that 
is why some external action was manifested. 

Recently there has been a trend to t ry to integrate 
traditional symbolic reasoning, on top of a purely reac­
tive system, both with real robots (e.g., [ A r k i n 90], 
[ M i t c h e l l 90],) and in simulation (e,g, [ F i r b y 89]). 
The idea is that the reactive system handles the real­
time issues of being embedded in the world, while the 
deliberative system does the 'hard' stuff traditionally 
imagined to be handled by an Art i f icial Intelligence sys­
tem. I think that these approaches are suffering from 
the well known 'horizon effect'—they have bought a lit­
tle better performance in their overall system with the 
reactive component, but they have simply pushed the 
limitations of the reasoning system a bit further into the 
future. I wil l not be concerned with such systems for the 
remainder of this paper. 

Before examining this work in greater detail, we will 
turn to the reasons why tradit ional Art i f icial Intelligence 
adopted such a different approach. 

3 Computers 

In evolution there is a theory [Gou ld a n d E ld redge 
77] of punctuated equilibria, where most of the time 
there is l i t t le change within a species, but at intervals a 
subpopulation branches off wi th a short burst of greatly 
accelerated changes. Likewise, I believe that in Artif icial 
Intelligence research over the last forty or so years, there 
have been long periods of incremental work within estab­
lished guidelines, and occasionally a shift in orientation 
and assumptions causing a new subfield to branch off. 
The older work usually continues, sometimes remaining 
strong, and sometimes dying off gradually. This descrip­
tion of the field also fits more general models of science, 
such as [ K u h n 70]. 

The point of this section is that all those steady­
state bodies of work rely, sometimes implicit ly, on cer 
tain philosophical and technological assumptions. The 
founders of the bodies of work are quite aware of these 
assumptions, but over time as new people come into the 
fields, these assumptions get lost, forgotten, or buried, 
and the work takes on a life of its own for its own sake. 

In this section I am particularly concerned with how 
the architecture of our computers influences our choice 
of problems on which to work, our models of thought, 
and our algorithms, and how the problems on which we 
work, our models of thought, and our algorithm choice 
puts pressure on the development of architectures of our 
computers. 
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Biological systems run on massively parallel, low speed 
computation, wi thin an essentially fixed topology net­
work w i th bounded depth. Almost all Artif icial Intel­
ligence research, and indeed almost all modern compu­
tation, runs on essentially Von Neumann architectures, 
with a large, inactive memory which can respond at very 
high speed over an extremely narrow channel, to a very 
high speed central processing unit which contains very 
l i t t le state. When connections to sensors and actuators 
are also considered, the gap between biological systems 
and our artificial systems widens. 

Besides putt ing architectural constraints on our pro­
grams, even our mathematical tools are strongly influ­
enced by our computational architectures. Most algo­
rithmic analysis is based on the RAM model of com­
putation (essentially a Von Neumann model, shown to 
be polynomially equivalent to a Turing machine, e.g., 
[ H a r t m a n i s 71]). Only in recent years have more gen­
eral models gained prominence, but they have been in 
the direction of oracies, and other improbable devices 
for our robot beings. 

Are we doomed to work forever within the current 
architectural constraints? 

Over the past few centuries computation technology 
has progressed from making marks on various surfaces 
(chiselling, wri t ing, etc.), through a long evolutionary 
chain of purely mechanical systems, then electromechan­
ical relay based systems, through vacuum tube based de­
vices, followed by an evolutionary chain of silicon­based 
devices to the current state of the art. 

It would be the height of arrogance and foolishness to 
assume that we are now using the ultimate technology for 
computation, namely silicon based integrated circuits, 
just as it would have been foolish (at. least in retrospect) 
to assume in the 16th century that Napier's Bones were 
the ultimate computing technology [ W i l l i a m s 83]. In­
deed the end of the exponential increase in computation 
speed for uni­processors is in sight, forcing somewhat the 
large amount of research into parallel approaches to more 
computation for the dollar, and per second. But there 
are other more radical possibilities for changes in compu­
tation infrastructure3. These include computation based 
on optical switching ( [G ibbs 85], [B rady 90]), protein 
folding, gene expression, non­organic atomic switching. 

3.1 P reh i s to r y 

During the early 1940's even while the second world war 
was being waged, and the first electronic computers were 
being built for cryptanalysis and trajectory calculations, 
the idea of using computers to carry out intelligent ac­
tivities was already on people's minds. 

Alan Turing, already famous for his work on com­
putability [ T u r i n g 37] had discussions with Donald 
Michie, as early as 1943, and others less known to the 
modern Arti f icial Intelligence world as early as 1941, 
about using a computer to play chess. He and others 
developed the idea of minimaxing a tree of moves, and 

3Equally radical changes have occurred in the past, but 
admittedly they happened well before the current high levels 
of installed base of silicon­based computers. 
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of static evaluation, and carried out elaborate hand sim­
ulations against human opponents. Later (during the 
period from 1945 to 1950 at least) he and Claude Shan­
non communicated about these ideas4. Although there 
was already an established field of mathematics concern­
ing a theory of games, pioneered by Von Neumann [Von 
N e u m a n n a n d M o r g e n s t e m 44] , chess had such a 
large space of legal positions, that even though every­
thing about it is deterministic, the theories were not 
particularly applicable. Only heuristic and operational 
programs seemed plausible means of attack. 

In a paper t i t led Intelligent Machinery, written in 
19485, but not published unti l long after his death [Tur­
i n g 70], Turing outlined a more general view of mak­
ing computers intelligent. In this rather short insight­
ful paper he foresaw many modern developments and 
techniques. He argued (somewhat whimsically, to the 
annoyance of his employers [Hodges 83]) for at least 
some fields of intelligence, and his particular example is 
the learning of languages, that the machine would have 
to be embodied, and claimed success "seems however to 
depend rather too much on sense organs and locomotion 
to be feasible". 

Turing argued that it must be possible to build a 
thinking machine since it was possible to build imitations 
of "any small part of a man". He made the distinction 
between producing accurate electrical models of nerves, 
and replacing them computationally with the available 
technology of vacuum tube circuits (this follows directly 
from his earlier paper [Tu r i ng 37]), and the assump­
tion that the nervous system can be modeled as a com­
putational system. For other parts of the body he sug­
gests that "television cameras, microphones, loudspeak­
ers" , etc., could be used to model the rest of the system. 
"This would be a tremendous undertaking of course." 
Even so, Turing notes that the so constructed machine 
"would stil l have no contact with food, sex, sport and 
many other things of interest to the human being". Tur­
ing concludes that the best domains in which to explore 
the mechanization of thought are various games, and 
cryptanalysis, " in that they require l i t t le contact wi th 
the outside world"6. 

Turing thus carefully considered the question of em­
bodiment, and for technical reasons chose to pursue as­
pects of intelligence which could be viewed, at least in 
his opinion, as purely symbolic. Minimax search, aug­
mented with the idea of pursuing chains of capture to 
quiescence, and clever static evaluation functions (the 

4 Norbert Wiener also outlines the idea of minimax in the 
final note of the original edition of [Wiener 48]. However 
he restricts the idea to a depth of two or three plays—one 
assumes for practical reasons, as he does express the general 
notion for n plays. See Section 3.3 for more details on the 
ways in which cybernetic models of thought were restricted 
by the computational models at hand. 

5 Different sources cite 1947 and 1948 as the time of 
writing. 

6 Interestingly, Turing did not completely abstract even a 
chess playing machine away from embodiment, commenting 
that "its only organs need be 'eyes' capable of distinguishing 
the various positions on a specially made board, and means 
for announcing its own moves". 



Turochamp system of David Champernowne and Alan 
Turing7, [Shannon 50]) soon became the dominant ap­
proach to the problem. [Newe l l , Shaw a n d S imon 
58] compared all four known implemented chess playing 
programs of 1958 (wi th a total combined experience of 
six games played), including Turochamp, and they all 
followed this approach. 

The basic approach of minimax with a good static 
evaluation function has not changed to this day. Pro­
grams of this ilk compete well wi th International Grand 
Masters. The best of them, Deep Thought [Hsu , A n a n ­
t h a r a m a n , C a m p b e l l a n d N o w a t z y k 90], uses spe­
cial purpose chips for massive search capabilities, along 
with a skillful evaluation scheme and selective deepening 
to direct that search better than in previous programs. 

Although Turing had conceived of using chess as a 
vehicle for studying human thought processes, this no­
tion has largely gotten lost along the way (there are of 
course exceptions, e.g., [ W i l k i n s 79] describes a system 
which substitutes chess knowledge for search in the mid­
die game—usually there are very few static evaluations, 
and tree search is mainly to confirm or deny the existence 
of a mate). Instead the driving force has always been 
performance, and the most successful program of the 
day has usually relied on technological advances. Brute 
force tree search has been the dominant method, itself 
dominated by the amount of bruteness available. This in 
turn has been a product of clever harnessing of the latest 
technology available. Over the years, the current 'cham­
pion* program has capitalized on the available hardware. 
MacHack­6 [ G r e e n b l a t t , East lake and Crocker 67] 
made use of the largest available fast memory (256K 36 
bits words—about a megabyte or so, or $45 by today's 
standards) and a new comprehensive architecture (the 
PDP­6) largely influenced by Minsky and McCarthy's re­
quirements for Lisp and symbolic programming. Chess 
4.0 and its descendants [Slate and A t k i n 84] relied 
on the running on the world's faster available computer. 
Belle [Condon a n d T h o m p s o n 84] used a smaller cen­
tral computer, but had a custom move generator, built 
from LSI circuits. Deep Thought, mentioned above as 
the most recent champion, relies on custom VLSI cir­
cuits to handle its move generation and tree search. It 
is clear that the success and progress in chess playing 
programs has been driven by technology enabling large 
tree searches. Few would argue that today's chess pro­
grams/hardware systems are very good models for gen­
eral human thought processes. 

There were some misgivings along the way, however. 
In an early paper [Sel f r idge 56] argues that better 
static evaluation is the key to playing chess, so that look­
ahead can be limited to a single move except in situations 
close to mate (and one assumes he would include situ­
ations where there is capture, and perhaps exchanges, 
involved). But , he claims that humans come to chess 
with a significant advantage over computers (the thrust 
of the paper is on learning, and in this instance on learn­
ing to play chess) as they have concepts such as Value', 
'double threat', the 'centre' etc., already formed. Chess 

7See Personal Computing January 1980, pages 80­81, for 
a description of this hand simulation of a chess machine. 

to Selfridge is not a disembodied exercise, but one where 
successful play is built upon a richness of experience in 
other, perhaps simpler, situations. 

There is an interesting counterpoint to the history of 
computer chess; the game of Go. The search tree for Go 
is much much larger than for chess, and a good static 
evaluation function is much harder to define. Go has 
never worked out well as a vehicle for research in com­
puter game playing—any reasonable crack at it is much 
more likely to require techniques much closer to those 
of human thought—mere computer technology advances 
are not going to bring the minimax approach close to 
success in this domain (see [ C a m p b e l l 83] for a brief 
overview). 

Before leaving Turing entirely there is one other rather 
significant contribution he made to the field which in 
a sense he predated. In [Tu r i ng 50] poses the ques­
tion "Can machines think?". To tease out an acceptable 
meaning for this question he presented what has come 
to be known as the Turing test, where a person com­
municates in English over a teletype wi th either another 
person or a computer. The goal is to guess whether it 
is a person or a computer at the other end. Over time 
this test has come to be an informal goal of Artif icial 
Intelligence8. Notice that it is a totally disembodied view 
of intelligence, although it is somewhat situated in that 
the machine has to respond in a timely fashion to its in­
terrogator. Turing suggests that the machine should try 
to simulate a person by taking extra time and making 
mistakes wi th arithmetic problems. This is the version 
of the Turing test that is bandied around by current day 
Artif icial Intelligence researchers9. 

Turing advances a number of strawman arguments 
against the case that a digital computer might one day 
be able to pass this test, but he does not consider the 
need that machine be fully embodied. In principle, of 
course, he is right. But how a machine might be then 
programmed is a question. Turing provides an argu­
ment that programming the machine by hand would be 
impractical, so he suggests having it learn. At this point 
he brings up the need to embody the machine in some 
way. He rejects giving it limbs, but suspects that eyes 
would be good, although not entirely necessary. At the 
end of the paper he proposes two possible paths towards 
his goal of a "thinking" machine. The unembodied path 
is to concentrate on programming intellectual activities 
like chess, while the embodied approach is to equip a 
digital computer "with the best sense organs that money 
can buy, and then teach it to understand and speak En­
glish". Art i f icial Intelligence followed the former path, 
and has all but ignored the latter approach10. 

8Turing expresses his own belief that it will be possible for 
a machine with 109 bits of store to pass a five minute version 
of the test with 70% probability by about the year 2000. 

9In fact there is a yearly competition with a $100,000 
prize for a machine that can pass this version of the Turing 
test. 

10An excerpt from Turing's paper is reprinted in [Hofs­
tadter and Dennett 8lJ. They leave out the whole section 
on learning and embodiment. 
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3.2 Es tab l i shmen t 

The establishment of Art i f icial Intelligence as a disci­
pline that is clearly the foundation of today's discipline 
by that name occurred during the period from the fa­
mous 'Dartmouth Conference' of 1956 through the pub­
lication of the book "Computers and Thought" in 1963 
( [Fe igenbaum a n d Fe ldman 63]), 

Named and mostly organized by John McCarthy as 
"The Dartmouth Summer Research Project on Art i f i ­
cial Intelligence" the six­week long workshop brought 
together those who would establish and lead the major 
Art i f icial Intelligence research centers in North America 
for the next twenty years. McCarthy joint ly established 
the M I T Artif icial Intelligence Laboratory with Marvin 
Minsky, and then went on to found the Stanford Ar t i f i ­
cial Intelligence Laboratory. Allen Newell and Herbert 
Simon shaped and lead the group that turned into the 
Computer Science department at Carnegie­Mellon Uni­
versity. Even today a large portion of the researchers in 
Artif icial Intelligence in North America had one of these 
four people on their doctoral committee, or were advised 
by someone who did. The ideas expressed at the Dart­
mouth meeting have thus had a signal impact upon the 
field first named there. 

As can be seen from interviews of the participants pub­
lished in [ M c C o r d u c k 79] there is sti l l some disagree­
ment over the intellectual property that was brought to 
the conference and its relative significance. The key out­
come was the acceptance and rise of search as the pre­
eminent tool of Art i f icial Intelligence. There was a gen­
eral acceptance of the use of search to solve problems, 
and with this there was an essential abandonment of any 
notion of situatedness. 

Minsky's earlier work had been involved with neural 
modeling. His Ph.D. thesis at Princeton was concerned 
with a model for the brain [ M i n s k y 54], Later, while 
at Harvard he was strongly influenced by McCulloch and 
Pitts (see [ M c C u l l o c h a n d P i t t s 43]), but by the time 
of the Dartmouth meeting he had become more involved 
wi th symbolic search­based systems. In his collection 
[ M i n s k y 68] of versions of his students' Ph.D. theses, 
all were concerned to some degree with defining and con­
trolling an appropriate search space. 

Simon and Newell presented their recent work on the 
Logic Theorist [Newe l l , Shaw a n d S i m o n 57] , a pro­
gram that proved logic theorems by searching a tree of 
subgoals. The program made extensive use of heuristics 
to prune its search space. W i th this success, the idea of 
heuristic search soon became dominant within the sti l l 
tiny Artif icial Intelligence community. 

McCarthy was not so affected by the conference that 
he had organized, and continues to this day to concen­
trate on epistemological issues rather than performance 
programs. However he was soon to invent the Lisp pro­
gramming language [ M c C a r t h y 1960] which became 
the standard model of computation for Art i f icial Intelli­
gence. It had great influence on the models of thought 
that were popular however, as it made certain things 
such as search, and representations based on individu­
als, much easier to program. 

At the time, most programs were written in assem­

574 Award and invited Papers 

bly language. It was a tedious job to write search 
procedures, especially recursive procedures in the ma­
chine languages of the day, although some people such 
as [Samuel 59] (another Dartmouth participant) were 
spectacularly successful. Newell and Simon owed much 
of their success in developing the Logic Theorist and 
their later General Problem Solver [Newe l l , Shaw a n d 
S i m o n 59], to their use of an interpreted language (1PL­
V—see [Newe l l , Shaw a n d S imon 61]) which sup­
ported complex list structures and recursion. Many of 
their student's projects reported in [Fe igenbaum and 
Fe ldman 63] also used this language. 

McCarthy's Lisp was much cleaner and simpler. It 
made processing lists of information and recursive tree 
searches tr iv ial to program­often a dozen lines of code 
could replace many hundreds of lines of assembler code. 
Search procedures now became even easier and more 
convenient to include in Art i f icial Intelligence programs. 
Lisp also had an influence on the classes of representa­
tional systems used, as is described in section 3.5. 

In [ M i n s k y 61] , Art i f icial Intelligence was broken into 
five key topics: search, pattern recognition, learning, 
planning and induction. The second through fourth of 
these were characterized as ways of controlling search 
(respectively by better selection of tree expansion oper­
ators, by directing search through previous experience, 
and by replacing a given search wi th a smaller and more 
appropriate exploration). Again, most of the serious 
work in Arti f icial Intelligence according to this break­
down was concerned with search­

Eventually, after much experimentation [M i ch i e and 
Ross 70], search methods became well understood, for­
malized, and analyzed [ K n u t h a n d M o o r e 75], and 
became celebrated as the primary method of Artif icial 
Intelligence [N i lsson 71]. 

At the end of the era of establishment, in 1963, Minsky 
generated an exhaustive annotated bibliography ( [ M i n ­
sky 63]) of literature "directly concerned wi th construc­
tion of artificial problem­solving systems**11. It con­
tains 925 citations, 890 of which are to scientific pa­
pers and books, and 35 of which are to collections of 
such papers. There are two main points of interest here. 
First, although the tit le of the bibliography, "A Selected 
Descriptor­Indexed Bibliography to the Literature on 
Arti f icial Intelligence*1, refers to Arti f icial Intelligence, 
in his introduction he refers to the area of concern as 
"artificial problem­solving systems". Second, and some­
what paradoxically, the scope of the bibliography is much 
broader than one would expect from an Arti f icial Intel­
ligence bibliography today. It includes many items on 
cybernetics, neuroscience, bionics, information and com­
munication theory, and first generation connectionism. 

These two contrasting aspects of the bibliography 
highlight a trend in Art i f ic ial Intelligence that contin­
ued for the next 25 years. Out of a soup of ideas on 
how to build intelligent machines the disembodied and 
non­situated approach of problem­solving search systems 
emerged as dominant, at least within the community 
that referred to its own work as Arti f icial Intelligence. 

11 It also acted as the combined bibliography for the papers 
in [Feigenbaum and Feldman 63]. 



With hindsight we can step back and look at what 
happened. Originally search was introduced as a mech­
anism for solving problems that arguably humans used 
some search in solving. Chess and logic theorem proving 
are two examples we have already discussed. In these do­
mains one does not expect instantaneous responses from 
humans doing the same tasks. They are not tasks that 
are situated in the world. 

One can debate whether even in these tasks it is wise 
to rely so heavily on search, as bigger problems will 
have exponentially bad effects on search time—in fact 
[Newe l l , Shaw a n d S imon 58] argue just this, but 
produced a markedly slower chess program because of 
the complexity of static evaluation and search control. 
Some, such as [Samuel 59] with his checker's play­
ing program, did worry about keeping things on a hu­
man timescale. [Slagle 63] in his symbolic integration 
program, was worried about being economically com­
petitive wi th humans, but as he points out in the last 
two paragraphs of his paper, the explosive increase in 
price/performance ratio for computing was able to keep 
his programs ahead. In general, performance increases in 
computers were able to feed researchers with a steadily 
larger search space, enabling them to feel that they were 
making progress as the years went by. For any given 
technology level, a long­term freeze would soon show 
that programs relying on search had very serious prob­
lems, especially if there was any desire to situate them 
in a dynamic world. 

In the last paragraph of [ M i n s k y 61] he does bring 
up the possibility of a situated agent, acting as a "think­
ing aid" to a person. But again he relies on a perfor­
mance increase in standard computing methods (this 
time through the introduction of time sharing) to supply 
the necessary time relevant computations. 

In the early days of the formal discipline of Art i f icial 
Intelligence, search was adopted as a basic technology. 
It was easy to program on digital computers. It lead to 
reasoning systems which are not easy to shoe­horn into 
situated agents. 

3.3 Cyberne t i cs 

There was, especially in the forties and fifties, another 
discipline which could be viewed as having the same 
goals as we have identified for Artif icial Intelligence—the 
construction of useful intelligent systems and the under­
standing of human intelligence. This work, known as 
Cybernetics, had a fundamentally different flavor from 
the today's tradit ional Artif icial Intelligence. 

Cybernetics co­evolved with control theory and sta­
tistical information theory—e.g., see [W iene r 48, 61]. 
It is the study of the mathematics of machines, not in 
terms of the functional components of a machine and 
how they are connected, and not in terms of what an 
individual machine can do here and now, and but rather 
in terms of all the possible behaviors that an individ­
ual machine can produce. There was a strong emphasis 
on characterizing a machine in terms of its inputs and 
outputs, and treating it as a black box as far as its inter­
nal workings were unobservable. The tools of analysis 
were often differential or integral equations, and these 

tools inherently l imited cybernetics to situations where 
the boundary conditions were not changing rapidly. In 
contrast, they often do so in a system situated in a dy­
namically changing world—that complexity needs to go 
somewhere; either into discontinuous models or changed 
boundary conditions. 

Cybernetics arose in the context of regulation of ma­
chinery and electronic circuits—it is often characterized 
by the subtitle of Wiener's book as the study of "con­
trol and communication in the animal and the machine". 
The model of computation at the time of its original de­
velopment was analog. The inputs to and outputs from 
the machine to be analyzed were usually thought of as 
almost everywhere continuous functions with reasonable 
derivatives, and the mechanisms for automated analysis 
and modeling were usually things that today would be 
characterized as analog components. As such there was 
no notion of symbolic search—any search was couched 
in terms of minimization of a function. There was also 
much less of a notion of representation as an abstract 
manipulable entity than was found in the Artif icial In­
telligence approaches. 

Much of the work in Cybernetics really was aimed at 
understanding animals and intelligence. Animals were 
modeled as machines, and from those models, it was 
hoped to glean how the animals changed their behav­
ior through learning, and how that lead to better adap­
tation to the environment for the whole organism. It 
was recognized rather early (e.g., [Ashby 52] for an ex­
plicit statement) that an organism and its environment 
must be modeled together in order to understand the 
behavior produced by the organism—this is clearly an 
expression of situatedness. The tools of feedback analy­
sis were used ( [Ashby 56]) to concentrate on such issues 
as stability of the system as the environment was per­
turbed, and in particular a system's homeostasis or abil­
i ty to keep certain parameters within prescribed ranges, 
no matter what the uncontrolled variations within the 
environment. 

Wi th regards to embodiment there were some exper­
iments along these lines. Many cybernetic models of 
organisms were rather abstract demonstrations of home­
ostasis, but some were concerned with physical robots, 
(Wa l te r 50, 5 1 , 5 3 ] l 2 describes robots built on cyber­
netic principles which demonstrated goal­seeking behav­
ior, homeostasis, and learning abilities. 

The complexity and abilities of Walter's physically em­
bodied machines rank with the purely imaginary ones in 
the first half dozen chapters of [B ra i t enbe rg 84] three 
decades later. 

The l imit ing factors in these experiments were twofold; 
(1) the technology of building small self contained robots 
when the computational elements were miniature (a rel­
ative term) vacuum tubes, and (2) the lack of mecha­
nisms for abstractly describing behavior at a level below 
the complete behavior, so that an implementation could 
reflect those simpler components, Thus in the first in­

12Much of the book [Wa l te r 53] is concerned with early 
work on electroencephalography and hopes for its role in re­
vealing the workings of the brain—forty years later these 
hopes do not seem to have been born out. 
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stance the models of thought were limited by technolog­
ical barriers to implementing those models, and in the 
second instance, the lack of certain critical components 
of a model (organization into submodules) restricted the 
ability to build better technological implementations. 

Let us return to Wiener and analyze the ways in which 
the mechanisms of cybernetics, and the mechanisms of 
computation were intimately interrelated in deep and self 
l imit ing ways. 

Wiener was certainly aware of digital machines13 even 
in his earlier edition of [W iene r 48]. He compared them 
to analog machines such as the Bush differential ana­
lyzer, and declares that the digital (or numerical, as he 
called them) machines are superior for accurate numeri­
cal calculations. But in some deep sense Wiener did not 
see the flexibility of these machines. In an added chapter 
in [W iene r 61) he discussed the problem of building a 
self reproducing machine, and in the Cybernetic tradi­
tion, reduced the problem to modeling the input/output 
characteristics of a black box, in particular a non­linear 
transducer. He related methods for approximating ob­
servations of this function wi th a linear combination of 
basis non­linear transducers, and then showed that the 
whole problem could be done by summing and mult i­
plying potentials and averaging over time. Rather than 
turn to a digital computer to do this he stated that there 
were some interesting possibilities for multiplication de­
vices using pieso­electric effects. We see then the in­
timate tying together between models of computation, 
i.e., analog computation, and models of the essentials of 
self­re product ion. It is impossible to tease apart cause 
and effect from this vantage point. The critical point is 
the way in which the mathematical proposal is tied to 
a technological implementation as a certification of the 
validity of the approach14. 

By the mid sixties it was clear that the study of intel­
ligence, even a study arising from the principles of cy­
bernetics, if it was to succeed needed to be more broad­
based in its levels of abstraction and tools of analysis. A 
good example is [ A r b i b 64]1 5 . Even so, he sti l l harbors 

l 3 l n the introduction to [ W i e n e r 48] he talks about em­
bodying such machines with photoelectric cells, thermome­
ters, strain gauges and motors in the service of mechanical 
labor. But, in the text of the book he does not make such a 
connection with models of organisms. Rather he notes that 
they are intended for many successive runs, with the memory 
being cleared out between runs and states that "the brain, 
under normal circumstances, is not the complete analogue of 
the computing machine but rather the analogue of a single 
run on such a machine". His models of digital computation 
and models of thought are too dis­similar to make the con­
nection that we would today. 

1 4 Wi th hindsight, an even wilder speculation is presented 
at the end of the later edition. Wiener suggests that the 
capital substances of genes and viruses may self reproduce 
through such a spectral analysis of infra­red emissions from 
the model molecules that then induce self organization into 
the undifferentiated magma of amino and nucleic acids avail­
able to form the new biological material. 

Arb ib includes an elegant warning against being too com­
mit ted to models, even mathematical models, which may turn 
out to be wrong. His statement that the "mere use of for­
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hope that cybernetic methods may turn out to give an 
understanding of the "overall coordinating and integrat­
ing principles" which interrelate the component subsys­
tems of the human nervous system. 

3.4 A b s t r a c t i o n 

The years immediately following the Dartmouth confer­
ence shaped the field of Art i f icial Intelligence in a way 
which has not significantly changed. The next few years, 
in the main, amplified the abstraction away from situat­
edness, or connectedness to the world1 6. There were a 
number of demonstrations along the way which seemed 
to legitimize this abstraction. In this section I review 
some of those events, and argue that there were funda­
mental flaws in the conclusions generally drawn. 

At M I T [Rober ts 63] demonstrated a vision program 
that could match pre­stored models to visual images of 
blocks and wedges. This program was the forerunner of 
all modern vision programs, and it was many years be­
fore its performance could be matched by others. It took 
a grey level image of the world, and extracted a cartoon­
like line drawing. It was this line drawing that was then 
f i t ted, via an inverse perspective transform to the pre­
stored models. To those who saw its results this looked 
like a straightforward and natural way to process images 
and to build models (based on the prestored library) of 
the objective reality in front of the camera. 

The unfortunate t ru th however, is that it is extra­
ordinarily difficult to extract reliable line drawings in 
any sort of realistic cases of images. In Roberts' case the 
lighting was carefully controlled, the blocks were well 
painted, and the background was chosen wi th care. The 
images of his blocks produced rather complete line draw­
ings wi th very l i t t le clutter where there should, by hu­
man observer standards, be no line elements. Today, 
after almost th ir ty years of research on bottom­up, top­
down, and middle­out line finders, there is sti l l no line 
finder that gets such clean results on a single natural 
image. Real world images are not at all the clean things 
that our personal introspection tells us they are. It is 
hard to appreciate this without working on an image 
yourself17. 

The fallout of Roberts' program working on a very 
controlled set of images was that people thought that 
the line detection problem was doable and solved. E.g., 
[Evans 68] cites Roberts in his discussion of how input 
could obtained for his analogy program which compared 
sets of line drawings of 2­D geometric figures. 

During the late sixties and early seventies the Shakey 
project [Ni lsson 84] at SRI reaffirmed the premises of 
abstract Art i f icial Intelligence. Shakey, mentioned in 
section 2, was a mobile robot that inhabited a set of 

mulas gives no magical powers to a theory" is just as timely 
today as it was then. 

16One exception was a computer controlled hand built at 
MIT, [Ernst 61], and connected to the TX­0 computer. The 
hand was very much situated and embodied, and relied heav­
ily on the external world as a model, rather than using inter­
nal representations. This piece of work seems to have gotten 
lost, for reasons that are not clear to me. 

17Try it ! Youll be amazed at how bad it is. 



specially prepared rooms. It navigated from room to 
room, trying to satisfy a goal given to it on a teletype. 
It would, depending on the goal and circumstances, nav­
igate around obstacles consisting of large painted blocks 
and wedges, push them out of the way, or push them to 
some desired location. 

Shakey had an onboard black and white television 
camera as its primary sensor. An offboard computer an­
alyzed the images, and merged descriptions of what was 
seen into an existing first order predicate calculus model 
of the world. A planning program, STRIPS, operated 
on those symbolic descriptions of the world to generate 
a sequence of actions for Shakey. These plans were trans­
lated through a series of refinements into calls to atomic 
actions in fairly t ight feedback loops wi th atomic sensing 
operations using Shakey's other sensors such as a bump 
bar and odometry. 

Shakey was considered a great success at the time, 
demonstrating an integrated system involving mobility, 
perception, representation, planning, execution, and er­
ror recovery. 

Shakey's success thus reaffirmed the idea of relying 
completely on internal models of an external objective 
reality. That is precisely the methodology it followed, 
and it appeared successful. However, it only worked 
because of very careful engineering of the environment. 
Twenty years later, no mobile robot has been demon­
strated matching all aspects of Shakey's performance in 
a more general environment, such as an office environ­
ment. 

The rooms in which Shakey operated were bare except 
for the large colored blocks and wedges. This made the 
class of objects that had to be represented very simple. 
The walls were of a uniform color, and carefully lighted, 
with dark rubber baseboards, making clear boundaries 
with the lighter colored floor. This meant that very sim­
ple and robust vision of trihedral corners between two 
walls and the floor, could be used for relocalizing the 
robot in order to correct for drift in the robot's odomet­
ric measurements. The blocks and wedges were painted 
different colors on different planar surfaces. This ensured 
that it was relatively easy, especially in the good lighting 
provided, to find edges in the images separating the sur­
faces, and thus making it easy to identify the shape of 
the polyhedron. Blocks and wedges were relatively rare 
in the environment, eliminating problems due to partial 
obscurations. The objective reality of the environment 
was thus quite simple, and the mapping to an internal 
model of that reality was also quite plausible. 

Around the same time at M I T a major demonstration 
was mounted of a robot which could view a scene con­
sisting of stacked blocks, then build a copy of the scene 
using a robot arm (see [ W i n s t o n 72]—the program was 
known as the copy­demo). The programs to do this were 
very specific to the blocks world, and would not have 
worked in the presence of simple curved objects, rough 
texture on the blocks, or without carefully controlled 
lighting. Nevertheless it reinforced the idea that a com­
plete three dimensional description of the world could be 
extracted from a visual image. It legitimized the work of 
others, such as [ W i n o g r a d 72], whose programs worked 

in a make­believe world of blocks—if one program could 
be built which understood such a world completely and 
could also manipulate that world, then it was assumed 
that programs which assumed that abstraction could in 
fact be connected to the real world without great diffi­
culty. The problem remained of slowness of the programs 
due to the large search spaces, but as before, faster com­
puters were always just around the corner. 

The key problem that I see wi th all this work (apart 
from the use of search) is that it relied on the assumption 
that a complete world model could be built internally 
and then manipulated. The examples from Roberts, 
through Shakey and the copy­demo all relied on very 
simple worlds, and controlled situations. The programs 
were able to largely ignore unpleasant issues like sensor 
uncertainty, and were never really stressed because of 
the carefully controlled perceptual conditions. No com­
puter vision systems can produce world models of this 
fidelity for anything nearing the complexity of realistic 
world scenes—even object recognition is an active and 
difficult research area. There are two responses to this: 
(1) eventually computer vision wi l l catch up and pro­
vide such world models—I don't believe this based on 
the biological evidence presented below, or (2) complete 
objective models of reality are unrealistic—and hence 
the methods of Art i f icial Intelligence that iely on such 
models are unrealistic. 

Wi th the rise in abstraction it is interesting to note 
that it was sti l l quite technologically difficult to con­
nect to the real world for most Artif icial Intelligence 
researchers18. For instance, [Ba r row and Sal ter 70] 
describe efforts at Edinburgh, a major Artif icial Intelli­
gence center, to connect sensing to action, and the results 
are extraordinarily primitive by today's standards—both 
M I T and SRI had major engineering efforts in support 
of their successful activities. [Moravec 81] relates a sad 
tale of frustration from the early seventies of efforts at 
the Stanford Artif icial Intelligence Laboratory to build 
a simple mobile robot wi th visual input. 

Around the late sixties and early seventies there was 
a dramatic increase in the availability of computer pro­
cessing power available to researchers at reasonably well 
equipped laboratories. Not only was there a large in­
crease in processing speed and physical memory, but 
time sharing systems became well established. An in­
dividual researcher was now able to work continuously 
and conveniently on a disembodied program designed to 
exhibit intelligence. However, connections to the real 
world were not only difficult and overly expensive, but 
the physical constraints of using them made develop­
ment of the 'intelligent' parts of the system slower by at 
least an order of magnitude, and probably two orders, as 
compared to the new found power of timesharing. The 
computers clearly had a potential to influence the mod­
els of thought used—and certainly that hypothesis is not 

1 8 I t is sti l l fairly difficult even today. There are very few 
turnkey systems available for purchase which connect sen­
sors to reasonable computers, and reasonable computers to 
actuators. The situation does seem to be rapidly improving 
however—we may well be just about to step over a significant 
threshold. 
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contradicted by the sort of micro­world work that actu­
ally went on. 

3.5 Know ledge 
By this point in the history of Artif icial Intelligence, 
the trends, assumptions, and approaches had become 
well established. The last fifteen years have seen the 
discipline thundering along on inertia more than any­
thing else. Apart from a renewed fl irtation with neural 
models (see section 3.8 below) there has been very l itt le 
change in the underlying assumptions about the mod­
els of thought. This coincides with an era of very l i t t le 
technical innovation in our underlying models of compu­
tation. 

For the remainder of section 3, I rather briefly review 
the progress made over the last fifteen years, and show 
how it relates to the fundamental issues of situatedness 
and embodiment brought up earlier. 

One problem wi th micro­worlds is that they are some­
what uninteresting. The blocks world was the most pop­
ular micro­world and there is very l i tt le that can be done 
in it other than make stacks of blocks. After a flurry of 
early work where particularly difficult 'problems' or 'puz­
zles' were discovered and then solved (e.g., [Sussman 
75)) it became more and more difficult to do something 
new within that domain. 

There were three classes of responses to this impover­
ished problem space: 

• Move to other domains with equally simple seman­
tics, but with more interesting print names than 
block­a etc. It was usually not the intent of the re­
searchers to do this, but many in fact did fall into 
this trap. [ W i n o g r a d and F lorcs 86] expose and 
criticize a number of such dressings up in the chap­
ter on "Understanding Language". 

• Build a more complex semantics into the blocks 
world and work on the new problems which arise. A 
rather heroic example of this is [Fah lman 74] who 
included balance, multi­shaped blocks, fr ict ion, and 
the like. The problem with this approach is that the 
solutions to the 'puzzles' become so domain specific 
that it is hard to see how they might generalize to 
other domains. 

• Move to the wider world. In particular, represent 
knowledge about the everyday world, and then build 
problem solvers, learning systems, etc., that operate 
in this semantically richer world. 

The last of these approaches has spawned possibly 
the largest recognizable subfield of Artif icial Intelligence, 
known as Knowledge Representation. It has its own con­
ferences. It has theoretical and practical camps. Yet, it 
is totally ungrounded. It concentrates much of its ener­
gies on anomalies within formal systems which are never 
used for any practical tasks. 

[ B r a c h m a n a n d Levesque 85] is a collection of pa­
pers in the area. The knowledge representation systems 
described receive their input either in symbolic form or 
as the output of natural language systems. The goal of 
the papers seems to be to represent 'knowledge' about 
the world. However it is totally ungrounded. There is 
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very l i t t le attempt to use the knowledge (save in the 
naive physics [Hayes 85), or qualitative physics [de 
K l e e r a n d B r o w n 84] areas—but note that these areas 
too are ungrounded). There is an implicit assumption 
that someday the inputs and outputs wil l be connected 
to something which wi l l make use of them (see [Brooks 
91a] for an earlier criticism of this approach). 

In the meantime the work proceeds wi th very l i t t le to 
steer i t , and much of it concerns problems produced by 
rather simple­minded attempts at representing complex 
concepts. To take but one example, there have been 
many pages writ ten on the problem of penguins being 
birds, even though they cannot fly. The reason that this 
is a problem is that the knowledge representation sys­
tems are built on top of a computational technology that 
makes convenient the use of very simple individuals (Lisp 
atoms) and placing links between them. As pointed out 
in [Brooks 90b] , and much earlier in [Brooks 91a], 
such a simple approach does not work when the system 
is to be physically grounded through embodiment. It 
seems pointless to try to patch up a system which in the 
long run cannot possibly work. [Drey fus 81]1 9 provides 
a useful criticism of this style of work. 

Perhaps the pinnacle of the knowledge­is­everything 
approach can be found in [Lenat a n d Fe igenbaum 91] 
where they discuss the foundations of a 10­year project 
to encode knowledge having the scope of a simple en­
cyclopedia. It is a totally unsituated, and totally dis­
embodied approach. Everything the system is to know 
is through hand­entered units of 'knowledge', although 
there is some hope expressed that later it wil l be able to 
learn itself by reading. [ S m i t h 91] provides a commen­
tary on this approach, and points out how the early years 
of the project have been devoted to finding a more prim­
itive level of knowledge than was previously envisioned 
for grounding the higher levels of knowledge. It is my 
opinion, and also Smith's, that there is a fundamental 
problem sti l l and one can expect continued regress until 
the system has some form of embodiment. 

3.6 Robo t i cs 

Section 2 outlined the early history of mobile robots. 
There have been some interesting developments over 
the last ten years as attempts have been made to em­
body some theories from Art i f icial Intelligence in mobile 
robots. In this section I briefly review some of the re­
sults. 

In the early eighties the Defense Advanced Research 
Projects Agency (DARPA) in the US, sponsored a ma­
jor thrust in building an Autonomous Land Vehicle. The 
init ial task for the vehicle was to run along a paved road 
in daylight using vision as the primary perceptual sense. 
The first attempts at this problem (e.g., [ W a x m a n , 
Le M o i g n e a n d Sr in ivasan )] followed the SMPA 
methodology. The idea was to build a three­dimensional 
world model of the road ahead, then plan a path along 
i t , including steering and velocity control annotations. 
These approaches failed as it was not possible to recover 
accurate three­dimensional road models from the visual 

19Endorsement of some of Dreyfus' views should not be 
taken as whole hearted embrace of all his arguments. 



images. Even under fair ly strong assumptions about the 
class of roads being followed the programs would produce 
ludicrously wrong results. 

W i t h the pressure of gett ing actual demonstrations 
of the vehicle running on roads, and of having all the 
processing onboard, radical changes had to made in the 
approaches taken. Two separate teams came up with 
similar approaches, [ T u r k , M o r g e n t h a l e r , G r e m ­
b a n , a n d M a r r a 88] a t Mar t in Mar iet ta, the inte­
grating contractor, and [ T h o r p e , H e b e r t , K a n a d e , 
a n d Sha fe r 88} at C M U , the main academic part ic i ­
pant in the project, both producing vision­based navi­
gation systems. Both systems operated in picture co­
ordinates rather than world coordinates, and both suc­
cessfully drove vehicles along the roads. Neither system 
generated three dimensional world models. Rather, both 
identified road regions in the images and servo­ed the ve­
hicle to stay on the road. The systems can be character­
ized as reactive, situated and embodied­ [ H o r s w i l l a n d 
B r o o k s 88] describe a system of similar vintage which 
operates an indoor mobile robot under visual navigation. 
The shift in approach taken on the outdoor vehicle was 
necessitated by the realities of the technology available, 
and the need to get things operational. 

Despite these lessons there is sti l l a strong bias to fol­
lowing the tradi t ional Art i f ic ia l Intelligence SMPA ap­
proach as can be seen in the work at C M U on the Am­
bler project. The same team that adopted a reactive 
approach to the road following problem have reverted to 
a cumbersome, complex, and slow complete world mod­
eling approach [ S i m m o n s a n d K r o t k o v 91] . 

3.7 V i s i o n 

Inspired by the work of [ R o b e r t s 63] and that on 
Shakey [N i l sson 84] , the vision community has been 
content to work on scene description problems for many 
years. The impl ic i t intent has been that when the rea­
soning systems of Art i f ic ia l Intelligence were ready, the 
vision systems would be ready to deliver world models 
as required, and the two could be hooked together to get 
a situated, or embodied system. 

There are numerous problems wi th this approach, and 
too l i t t le room to treat them adequately wi th in the space 
constraints of this paper. The fundamental issue is that 
Art i f ic ia l Intelligence and Computer Vision have made 
an assumption that the purpose of vision is to recon­
struct the static external world (for dynamic worlds it is 
just supposed to do it often and quickly) as a three di ­
mensional world model. I do not believe that this is pos­
sible w i th the generality that is usually assumed. Fur­
thermore I do not th ink it is necessary, nor do I think 
that it is what human vision does. Section 4 discusses 
some of these issues a l i t t le more. 

3.8 P a r a l l e l i s m 

Parallel computers are potential ly quite different f rom 
Von Neumann machines. One might expect then that 
parallel models of computation would lead to fundamen­
tal ly different models of thought. The story about par­
allelism, and the influence of parallel machines on mod­
els of thought, and the influence of models of thought 

on parallel machines has two and a half pieces. The 
first piece arose around the t ime of the early cybernetics 
work, the second piece exploded in the mid­eighties and 
we have st i l l to see all the casualties. The last half piece 
has been pressured by the current models of thought to 
change the model of parallelism. 

There was a large flurry of work in the late fifties 
and sixties involving linear threshold devices, commonly 
known as perceptions. The extremes in this work are 
represented by [ R o s e n b l a t t 62] and [ M i n s k y a n d Pa­
p e r t 69 ] . These devices were used in rough analogy to 
neurons and were to be wired into networks that learned 
to do some task, rather than having to be programmed. 
Adjust ing the weights on the inputs of these devices 
was roughly equivalent in the model to adjusting the 
synaptic weights where axons connect to dendrites in 
real neurons—this is currently considered as the likely 
site of most learning wi th in the brain. 

The idea was that the network had specially distin­
guished inputs and outputs. Members of classes of pat­
terns would be presented to the inputs and the outputs 
would be given a correct classification. The difference 
between the correct response and the actual response of 
the network would then be used to update weights on 
the inputs of individual devices. The key driving force 
behind the blossoming of this field was the perceptron 
convergence theorem that showed that a simple param­
eter adjustment technique would always let a single per­
ceptron learn a discrimination if there existed a set of 
weights capable of making that discrimination. 

To make things more manageable the networks were 
often structured as layers of devices wi th connections 
only between adjacent layers. The directions of the con­
nections were str ict ly controlled, so that there were no 
feedback loops in the network and that there was a natu­
ral progression from one single layer that would then be 
the input layer, and one layer would be the output layer. 
The problem wi th multi­layer networks was that there 
was no obvious way to assign the credit or blame over 
the layers for a correct or incorrect pattern classification. 

In the formal analyses that were carried out (e.g., 
[N i l sson 65] and [ M i n s k y a n d P a p e r t 69]) only a 
single layer of devices which could learn, or be adjusted, 
were ever considered. [N i l s son 65] in the later chapters 
did consider multi­layer machines, but in each case, all 
but one layer consisted of static unmodifiable devices. 
There was very l i t t le work on analyzing machines wi th 
feedback. 

None of these machines was part icularly situated, or 
embodied. They were usually tested on problems set up 
by the researcher. There were many abuses of the scien­
tific method in these tests the results were not always 
as the researchers interpreted them. 

After the publication o f [ M i n s k y a n d P a p e r t 69] , 
which contained many negative results on the capabili­
ties of single layer machines, the field seemed to die out 
for about fifteen years. 

Recently there has been a resurgence in the field start­
ing wi th the publication o f [ R u m e l h a r t a n d M c C l e l ­
l a n d 86] . 

The new approaches were inspired by a new learn­
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ing algorithm known as back propagation ( [ R u m e l h a r t , 
H i n t o n a n d W i l l i a m s 86]). This algorithm gives a 
method for assigning credit and blame in fully connected 
multi­layer machines without feedback loops. The indi­
vidual devices within the layers have linearly weighted 
inputs and a differentiable output function, a sigmoid, 
which closely matches a step function, or threshold func­
tion. Thus they are only slight generalizations of the ear­
lier perceptrons, but their continuous and differentiable 
outputs enable hil l climbing to be performed which lets 
the networks converge eventually to be able to classify 
inputs appropriately as trained. 

Back propagation has a number of problems; it is slow 
to learn in general, and there is a learning rate which 
needs to be tuned by hand in most cases. The effect of 
a low learning rate is that the network might often get 
stuck in local minima. The effect of a higher learning 
rate is that the network may never really converge as 
it wil l be able to jump out of the correct minimum as 
well as it can jump out of an incorrect minimum. These 
problems combine to make back propagation, which is 
the cornerstone of modern neural network research, in­
convenient for use in embodied or situated systems. 

In fact, most of the examples in the new wave of neural 
networks have not been situated or embodied. There are 
a few counterexamples (e.g., [Sejnowksi and Rosen­
berg 87], [A tkeson 89] and [V io la 90]) but in the 
main they are not based on back propagation. The most 
successful recent learning techniques for situated, em­
bodied, mobile robots, have not been based on parallel 
algorithms at all—rather they use a reinforcement learn­
ing algorithm such as Q­learning ( [Wa tk i ns 89]) as for 
example, [Kae lb l i ng 90] and [Mahadevan and C o n ­
nel l 90], 

One problem for neural networks becoming situated or 
embodied is that they do not have a simple translation 
into time varying perception or action pattern systems. 
They need extensive front and back ends to equip them 
to interact with the world—all the cited examples above 
had such features added to them. 

Both waves of neural network research have been her­
alded by predictions of the demise of all other forms of 
computation. It has not happened in either case. Both 
times there has been a bandwagon effect where many 
people have tried to use the mechanisms that have be­
come available to solve many classes of problems, often 
without regard to whether the problems could even be 
solved in principle by the methods used. In both cases 
the enthusiasm for the approach has been largely stimu­
lated by a single piece of technology, first the perceptron 
training rule, and then the back propagation algorithm. 

And now for the last half­piece of the parallel compu­
tation story. The primary hope for parallel computation 
helping Artif icial Intelligence has been the Connection 
Machine developed by [H i l l i s 85]. This is a SIMD ma­
chine, and as such might be thought to have limited ap­
plicability for general intelligent activities. Hillis, how­
ever, made a convincing case that it could be used for 
many algorithms to do with knowledge representation, 
and that it would speed them up, often to be constant 
time algorithms. The book describing the approach is 
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exciting, and in fact on pages 4 and 5 of [H i l l i s 85] the 
author promises to break the Von Neumann bottleneck 
by making all the silicon in a machine actively compute 
all the time. The argument is presented that most of the 
silicon in a Von Neumann machine is devoted to memory, 
and most of that is inactive most of the time. This was a 
brave new approach, but it has not survived the market 
place. New models of the connection machine have large 
local memories (in the order of 64K bits) associated wi th 
each one bit processor (there can be up to 64K processors 
in a single Connection Machine). Once again, most of 
the silicon is inactive most of the time. Connection ma­
chines are used within Arti f icial Intelligence laboratories 
mostly for computer vision where there is an obvious 
mapping from processors and their NEWS network to 
pixels of standard digital images. Traditional Artif icial 
Intelligence approaches are so tied to their traditional 
machine architectures that they have been hard to map 
to this new sort of architecture. 

4 Biology 
We have our own introspection to tell us how our minds 
work, and our own observations to tell us how the be­
havior of other people and of animals works. We have 
our own partial theories and methods of explanation20. 
Sometimes, when an observation, internal or external, 
does not fit our pre­conceptions, we are rather ready to 
dismiss it as something we do not understand, and do 
not need to understand. 

In this section I wi l l skim over a scattering of recent 
work from ethology, psychology, and neuroscience, in an 
effort to indicate how deficient our everyday understand­
ing of behavior really is. This is important to realize 
because traditional Artif icial Intelligence has relied at 
the very least implicitly, and sometimes quite explicitly, 
on these folk understandings of human and animal be­
havior. The most common example is the story about 
getting from Boston to California (or vice­versa), which 
sets up an analogy between what a person does mentally 
in order to Plan the tr ip, and the means­ends method of 
planning. See [Agre 91] for a more detailed analysis of 
the phenomenon. 

4.1 E t h o l o g y 

Ethology, the study of animal behavior, tries to explain 
the causation, development, survival value, and evolu­
tion of behavior patterns within animals. See [McFar ­
l a n d 85] for an easy introduction to modern ethology. 

Perhaps the most famous ethologist was Niko Tinber­
gen (closely followed by his co­Nobel winners Konrad 
Lorenz and Karl von Frisch). His heirarchical view of in­
telligence, described in [T i nbe rgen 51], is often quoted 
by Artif icial Intelligence researchers in support of their 
own hierarchical theories. However, this approach was 
meant to be a neurobiologically plausible theory, but it 
was described in the absence any evidence. Tinbergen's 
model has largely been replaced in modern ethology by 
theories of motivational competition, disinhibition, and 
dominant and sub­dominant behaviors. 

20See [Churchland 86] for a discussion of folk psychology. 



There is no completely worked out theory of exactly 
how the decision is made as to which behavioral pattern 
(e.g., dr ink ing or eating) should be active in an animal. 
A large number of experiments give evidence of complex 
internal and external feedback loops in determining an 
appropriate behavior. [ M c F a r l a n d 88] presents a num­
ber of such experiments and demonstrates the challenges 
for the theories. The experimental data has ruled out 
the earlier hierarchical models of behavior selection, and 
current theories share many common properties w i th the 
behavior­based approach advocated in this paper. 

4*2 P s y c h o l o g y 

The way in which our brains work is quite hidden f rom 
us. We have some introspection, we believe, to some as­
pects of our thought processes, but there are certainly 
perceptual and motor areas that we are quite confident 
we have no access to 2 1 . To tease out the mechanisms 
at work we can do at least two sorts of experiments: we 
can test the brain at l imits of its operational envelop 
to see how it breaks down, and we can study damaged 
brains and get a glimpse at the operation of previously 
integrated components. In fact, some of these observa­
tions call into question the rel iabi l i ty of any of our own 
introspections. 

There have been many psychophysical experiments to 
test the l imits of human visual perception. We are all 
aware of so­called optical illusions where our visual ap­
paratus seems to break down. The journal Perception 
regularly carries papers which show that what we per­
ceive is not what we see (e.g., [ R a m a c h a n d r a n a n d 
A n s t i s 85] ) . For instance in visual images of a j ump­
ing leopard whose spots are made to art i f icial ly move 
about, we perceive them all as individual ly following the 
leopard. The straightforward model of human percep­
t ion proposed by [ M a r r 82 ] , and almost universally ac­
cepted by Art i f ic ia l Intelligence vision researchers, does 
not account for such results. Likewise it is now clear 
that the color pathway is separate from the intensity 
pathway in the human visual system, and our color vi­
sion is something of an i l lusion2 2. We are unaware of 
these deficiencies—most people are not aware that they 
have a bl ind spot in each eye the size of the image of the 
moon—they are total ly inaccessible to our consciousness. 
Even more surprising, our very notion of consciousness is 
full of inconsistencies—psychophysical experiments show 
that our experience of the flow of t ime as we observe 
things in the world is an i l lusion, as we can often con­
sciously perceive things in a temporal order inconsistent 
w i th the world as constructed by an experimenter (see 
[ D e n n e t t a n d K i n s b o u r n e 90] for an overview). 

We turn now to damaged brains to get a glimpse at 
how things might be organized. This work can better 
be termed neuropsychology. There is a large body of 

21 This contrasts with a popular fad in Artificial Intelligence 
where all reasoning of a system is supposed to be available 
to a meta­reasoning system, or even iretrospectively to the 
system itself. 

22See the techniques used in the current trend of 'coloriza­
tion' of black and white movie classics for a commercial cap­
italization on our visual deficiencies. 

l i terature on this subject from which we merely pick out 
just a few instances here. The purpose is to highlight the 
fact that the approaches taken in tradit ional Art i f icial 
Intelligence are vastly different f rom the way the human 
brain is organized. 

The common view in Art i f ic ia l Intelligence, and par­
t icular ly in the knowledge representation community, is 
that there is a central storage system which links to­
gether the information about concepts, individuals, cate­
gories, goals, intentions, desires, and whatever else might 
be needed by the system. In part icular there is a ten­
dency to believe that the knowledge is stored in a way 
that is independent f rom the way or circumstances in 
which it was acquired. 

[ M c C a r t h y a n d W a r r i n g t o n 88] (and a series of 
earlier papers by them and their colleagues) give cause to 
doubt this seemingly logical organization. They report 
on a particular individual (identified as T O B ) , who at 
an advanced age developed a semantic deficit in knowl­
edge of l iving things, but retained a reasonable knowl­
edge of inanimate things. By itself, this sounds perfectly 
plausible—the semantic knowledge might just be stored 
in a category specific way, and the animate part of the 
storage has been damaged. But , it happens that T O B 
is able to access the knowledge when, for example he 
was shown a picture of a dolphin—he was able to form 
sentences using the word 'dolphin ' and talk about its 
habitat, its abi l i ty to be trained, and its role in the US 
mil i tary. When verbally asked what a dolphin is, how­
ever, he thought it was either a fish or a bird. He has no 
such conflict in knowledge when the subject is a wheel­
barrow, say. The authors argue that since the deficit 
is not complete but shows degradation, the hypothesis 
that there is a deficit in a particular type of sensory 
modal i ty access to a particular category subclass in a 
single database is not valid. Through a series of further 
observations they argue that they have shown evidence 
of modality­specific organization of meaning, besides a 
category specific organization. Thus knowledge may be 
duplicated in many places, and may by no means be 
uniformly accessible. There are examples of where the 
knowledge is shown to be inconsistent. Our normal in­
trospection does not reveal this organization, and would 
seem to be at odds wi th these explanations. Below, we 
call into question our normal introspection. 

[ N e w c o m b e a n d R a t c l i f f 89] present a long discus­
sion of visuospatial disorders in brain damaged patients. 
Many of these severely tax the model a person as an in­
tegrated rat ional agent. One simple example they report 
is finger agnosia, where a patient may be quite impaired 
in the way he can carry out conscious simple tasks using 
their fingers, but could st i l l do things such as thread a 
needle, or play the piano well. This suggests the exis­
tence of mult ip le parallel channels of control, rather than 
some centralized finger control box, for instance. 

[ T e i t e l b a u m , Pe l l i s a n d Pe l l i s 90] summarize work 
which shows that rat locomotion involves a number of re­
flexes. Drugs can be used to shut off many reflexes so 
that a rat w i l l appear to be unable to move. Almost all 
st imul i have no effect—the rat simply remains wi th its 
limbs in whatever configuration the experimenter has ar­
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ranged them. However certain very specific stimuli can 
trigger a whole chain of complex motor interactions— 
e.g,, t i l t ing the surface on which the rats feet are resting 
to the point where the rat starts to slide will cause the 
rat to leap. There has also been a recent popularization 
of the work of [Sacks 74] which shows similar symp­
toms, in somewhat less understood detail, for humans. 
Again, it is hard to explain these results in terms of a cen­
tralized will—rather an interpretation of multiple almost 
independent agencies such as hypothesized by [ M i n s k y 
86] seems a better explanation. 

Perhaps the most remarkable sets of results are from 
split brain patients. It has become common knowledge 
that we all possess a left brain and a right brain, but 
in patients whose corpus callosum has been severed they 
really do become separate operational brains in their own 
rights [Gazzaniga a n d L e D o u x 77], 

Through careful experimentation it is possible to in­
dependently communicate with the two brains, visually 
with both, and verbally wi th the left. By setting up ex­
periments where one side does not have access to the 
information possessed by the other side, it is possible 
to push hard on the introspection mechanisms. It turns 
out that the ignorant half prefers to fabricate explana­
tions for what is going on, rather than admit ignorance. 
These are normal people (except their brains are cut in 
half), and it seems that they sincerely believe the lies 
they are tell ing, as a result of confabulations generated 
during introspection. One must question then the or­
dinary introspection that goes on when our brains are 
intact. 

What is the point of all this? The traditional Ar t i ­
ficial Intelligence model of representation and organiza­
tion along centralized lines is not how people are built. 
Traditional Art i f icial Intelligence methods are certainly 
not necessary for intelligence then, and so far they have 
not really been demonstrated to be sufficient in situ­
ated, embodied systems. The organization of humans is 
by definition sufficient—it is not known at all whether 
it wi l l turn out to be necessary. The point is that we 
cannot make assumptions of necessity under either ap­
proach. The best we can expect to do for a while at 
least, is to show that some approach is sufficient to pro­
duce interesting intelligence. 

4.3 Neurosc ience 

The working understanding of the brain among Arti f icial 
Intelligence researchers seems to be that it is an electri­
cal machine wi th electrical inputs and outputs to the 
sensors and actuators of the body. One can see this as­
sumption made explicit, for example, in the fiction and 
speculative wri t ing of professional Artif icial Intelligence 
researchers such as [Denne t t 81] and [Moravec 88]. 
This view, and further reduction, leads to the very sim­
ple models of brain used in connectionism ( [ R u m e l h a r t 
a n d M c C l e l l a n d 86]). 

In fact, however, the brain is embodied with a much 
more serious coupling. The brain is situated in a soup 
of hormones, that influences it in the strongest possi­
ble ways. It receives messages encoded hormonally, and 
sends messages so encoded throughout the body. Our 
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electrocentrism, based on our electronic models of com­
putation, has lead us to ignore these aspects in our 
informal models of neuroscience, but hormones play a 
strong, almost dominating, role in determination of be­
havior in both simple ( [ K r a v i t z 88]) and higher animals 
([Bloom 76])23. 

Real biological systems are not rational agents that 
take inputs, compute logically, and produce outputs. 
They are a mess of many mechanisms working in var­
ious ways, out of which emerges the behavior that we 
observe and rationalize. We can see this in more detail 
by looking both at the individual computational level, 
and at the organizational level of the brain. 

We do not really know how computation is done at the 
lowest levels in the brain. There is debate over whether 
the neuron is the functional unit of the nervous system, 
or whether a single neuron can act as a many indepen­
dent smaller units ( [Cohen a n d Wu 90]). However, 
we do know that signals are propagated along axons 
and dendrites at very low speeds compared to electronic 
computers, and that there are significant delays cross­
ing synapses. The usual estimates for the computational 
speed of neuronal systems are no more than about 1 Kilo­
Hertz. This implies that the computations that go on in 
humans to effect actions in the subsecond range must go 
through only a very l imited number of processing steps— 
the network cannot be very deep in order to get mean­
ingful results out on the timescales that routinely occur 
for much of human thought. On the other hand, the net­
works seem incredibly richly connected, compared to the 
connection width of either our electronic systems, or our 
connectionist models. For simple creatures some motor 
neurons are connected to tens of percent of the other 
neurons in the animal. For mammals motor neurons are 
typically connected to 5,000 and some neurons in hu­
mans are connected to as many as 90,000 other neurons 
( [Church land 86]). 

For one very simple animal Caenorhabditis elegans, a 
nematode, we have a complete wiring diagram of its ner­
vous system, including its development stages ( [Wood 
88]). In the hermaphrodite there are 302 neurons and 
56 support cells out of the animal's total of 959 cells. 
In the male there are 381 neurons and 92 support cells 
out of a total of 1031 cells. Even though the anatomy 
and behavior of this creature are well studied, and the 
neuronal activity is well probed, the way in which the 
circuits control the animal's behavior is not understood 
very well at all. 

Given that even a simple animal is not yet understood 
one cannot expect to gain complete insight into building 
Arti f icial Intelligence by looking at the nervous systems 
of complex animals. We can, however, get insight into 
aspects of intelligent behavior, and some clues about sen­
sory systems and motor systems. 

[Wehner 87] for instance, gives great insight into 

23See [Bergland 65] for a history of theories of the brain, 
and how they were influenced by the current technologies 
available to provide explanatory power. Unfortunately this 
book is marred by the author's own lack of understanding of 
computation which leads him to dismiss electrical activity of 
the brain as largely irrelevant to the process of thought. 



the way in which evolution has selected for sensor­
neurological couplings with the environment which can 
be very specialized. By choosing the right sensors, ani­
mals can often get by wi th very l i tt le neurological pro­
cessing, in order to extract just the right information 
about the here and now around them, for the task at 
hand. Complex world model building is not possible 
given the sensors' l imitations, and not needed when the 
creature is appropriately situated. 

[Cruse 90} and [Gotz and W e n k i n g 73] give in­
sight into how simple animals work, based on an under­
standing at a primitive level of their neurological circuits. 
These sorts of clues can help us as we try to build walking 
robots­for examples of such computational neuroethol­
ogy see [Brooks 89] and [Beer 90]. 

These clues can help us build better artificial systems, 
but by themselves they do not provide us with a full 
theory. 

5 Ideas 
Earlier we identified situatedness, embodiment, intelli­
gence, and emergence, with a set of key ideas that have 
lead to a new style of Artif icial Intelligence research 
which we are calling behavior­based robots. In this sec­
tion 1 expound on these four topics in more detail. 

5.1 Si tuatedness 

Traditional Art i f icial Intelligence has adopted a style of 
research where the agents that are built to test theories 
in intelligence are essentially problem solvers that work 
in an symbolic abstracted domain. The symbols may 
have referents in the minds of the builders of the systems, 
but there is nothing to ground those referents in any real 
world. Furthermore, the agents are not situated in a 
world at all. Rather they are given a problem, and they 
solve i t . Then, they are given another problem and they 
solve it. They are not participating in a world as would 
agents in the usual sense. 

In these systems there is no external world per se, 
with continuity, surprises, or ongoing history. The pro­
grams deal only with a model world, with its own built­
in physics. There is a blurring between the knowledge 
of the agent and the world it is supposed to be oper­
ating in—indeed in many Arti f icial Intelligence systems 
there is no distinction between the two—the agent has 
access to direct and perfect perception, and direct and 
perfect action. When consideration is given to porting 
such agents or systems to operate in the world, the ques­
tion arises of what sort of representation they need of the 
real world. Over the years within traditional Artif icial 
Intelligence, it has become accepted that they wil l need 
an objective model of the world with individuated en­
tities, tracked and identified over time—the models of 
knowledge representation that have been developed ex­
pect and require such a one­to­one correspondence be­
tween the world and the agent's representation of i t . 

The early robots such as Shakey and the Cart certainly 
followed this approach. They built models of the world, 
planned paths around obstacles, and updated their esti­
mate of where objects were relative to themselves as they 
moved. We developed a different approach [Brooks 86] 

where a mobile robot used the world as its own model— 
continuously referring to its sensors rather than to an 
internal world model. The problems of object class and 
identity disappeared. The perceptual processing became 
much simpler. And the performance of the robot was 
better in comparable tasks than that of the Cart24, and 
with much less computation, even allowing for the dif­
ferent sensing modalities. 

[Ag re 88] and [ C h a p m a n 90] formalized these ideas 
in their arguments for deictic (or indexcal­functional in 
an earlier incarnation) representations. Instead of hav­
ing representations of individual entities in the world, 
the system has representations in terms of the relation­
ship of the entities to the robot. These relationships are 
both spatial and functional. For instance in Pengi [Ag re 
a n d C h a p m a n 87], rather than refer to Bee­27the sys­
tem refers to the­bee­thai­is­chasing­me­now. The latter 
may or may not be the same bee that was chasing the 
robot two minutes previously—it doesn 't matter for the 
particular tasks in which the robot is engaged. 

When this style of representation is used it is possi­
ble to build computational systems which trade off com­
putational depth for computational width. The idea is 
that the computation can be represented by a network 
of gates, timers, and state elements. The network does 
not need long paths from inputs (sensors) to outputs 
(actuators). Any computation that is capable of being 
done is done in a very short time span. There have been 
other approaches which address a similar time­bounded 
computation issue, namely the bounded rationality ap­
proach [Russel l 89] . Those approaches try to squeeze a 
traditional Artif icial Intelligence system into a bounded 
amount of computation. Wi th the new approach we tend 
to come from the other direction, we start with very l it­
tle computation and build up the amount, while staying 
away from the boundary of computation that takes too 
long. As more computation needs to be added there is 
a tendency to add it in breadth (thinking of the compu­
tation as being represented by a circuit whose depth is 
the longest path length in gates from input to output) 
rather than depth. 

A situated agent must respond in a timely fashion to 
its inputs. Modeling the world completely under these 
conditions can be computationally challenging. But a 
world in which it is situated also provides some conti­
nuity to the agent. That continuity can be relied upon, 
so that the agent can use its perception of the world in­
stead of an objective world model. The representational 
primitives that are useful then change quite dramatically 
from those in traditional Artif icial Intelligence. 

The key idea from situatedness is: 

The world is its own best model 

5.2 E m b o d i m e n t 

There are two reasons that embodiment of intelligent 
systems is critical. First, only an embodied intelligent 
agent is fully validated as one that can deal with the 

24The tasks carried out by this first robot, Allen, were of a 
different class than those attempted by Shakey. Shakey could 
certainly not have carried out the tasks that Allen did. 
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real world. Second, only through a physical grounding 
can any internal symbolic or other system find a place to 
bottom out, and give 'meaning' to the processing going 
on within the system. 

The physical grounding of a robot in the world forces 
its designer to deal wi th all the issues. If the intelligent 
agent has a body, has sensors, and has actuators, then 
all the details and issues of being in the world must be 
faced. It is no longer possible to argue in conference pa­
pers, that the simulated perceptual system is realistic, or 
that problems of uncertainty in action wil l not be signif­
icant. Instead, physical experiments can be done simply 
and repeatedly. There is no room for cheating25. When 
this is done it is usual to find that many of the prob­
lems that seemed significant are not so in the physical 
system (typically 'puzzle' like situations where symbolic 
reasoning seemed necessary tend not to arise in embod­
ied systems), and many that seemed non­problems be­
come major hurdies (typically these concern aspects of 
perception and action)26. 

A deeper problem is "can there be disembodied 
mind?". Many believe that what is human about us is 
very directly related to our physical experiences. For in­
stance [Johnson 87] argues that a large amount of our 
language is actually metaphorically related to our phys­
ical connections to the world. Our mental 'concepts' are 
based on physically experienced exemplars. [ S m i t h 91] 
suggests that without physical grounding there can be 
no halt to the regress within a knowledge based system 
as it tries to reason about real world knowledge such 
as that contained in an encyclopedia (e.g., [Lenat and 
Fe igenbaum 91]). 

Without an ongoing participation and perception of 
the world there is no meaning for an agent. Everything 
is random symbols. Arguments might be made that at 
some level of abstraction even the human mind operates 
in this solipsist position. However, biological evidence 
(see section 4) suggests that the human mind's connec­
tion to the world is so strong, and many faceted, that 
these philosophical abstractions may not be correct. 

The key idea from embodiment is: 

The world grounds regress. 

5,3 In te l l igence 

[Brooks 91a] argues that the sorts of activities we usu­
ally think of as demonstrating intelligence in humans 
have been taking place for only a very small fraction 
of our evolutionary lineage. Further, I argue that the 
'simple' things to do with perception and mobility in a 
dynamic environment took evolution much longer to per­
fect, and that all those capabilities are a necessary basis 
for 'higher­level* intellect. 

25l mean this in the sense of causing self­delusion, not in 
the sense of wrong doing with intent. 

26In fact, there is some room for cheating as the physical 
environment can be specially simplified for the robot—and 
in fact it may be very hard in some cases to identify such 
self delusions. In some research projects it may be necessary 
to test a particular class of robot activities, and therefore it 
may be necessary to build a test environment for the robot. 
There is a fine and difficult to define line to be drawn here. 
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Therefore, I proposed looking at simpler animals as a 
bottom­up model for building intelligence. It is soon ap­
parent, when 'reasoning' is stripped away as the prime 
component of a robot's intellect, that the dynamics of 
the interaction of the robot and its environment are pr i ­
mary determinants of the structure of its intelligence. 

Earlier, [S imon 69] had discussed a similar point in 
terms of an ant walking along the beach. He pointed out 
that the complexity of the behavior of the ant is more a 
reflection of the complexity of its environment than its 
own internal complexity. He speculated that the same 
may be true of humans, but within two pages of text 
had reduced studying human behavior to the domain of 
crypto­arithmetic problems. 

It is hard to draw the line at what is intelligence, and 
what is environmental interaction. In a sense it does not 
realty matter which is which, as all intelligent systems 
must be situated in some world or other if they are to 
be useful entities. 

The key idea from intelligence is: 

Intelligence is determined by the dynamics of 
interaction with the world. 

5.4 Emergence 

In discussing where intelligence resides in an Artif icial 
Intelligence program [ M i n s k y 61] points out that "there 
is never any 'heart' in a program" and "we find senseless 
loops and sequences of tr iv ial operations". It is hard to 
point at a single component as the seat of intelligence. 
There is no homunculus. Rather, intelligence emerges 
f rom the interaction of the components of the system. 
The way in which it emerges, however, is quite different 
for traditional and behavior­based Arti f icial Intelligence 
systems. 

In traditional Artif icial Intelligence the modules that 
are defined are information processing, or functional 
Typically these modules might be a perception module, 
a planner, a world modeler, a learner, etc. The compo­
nents directly participate in functions such as perceiving, 
planning, modeling, learning, etc. Intelligent behavior 
of the system, such as avoiding obstacles, standing up, 
controlling gaze, etc., emerges from the interaction of the 
components. 

In behavior­based Artif icial Intelligence the modules 
that are defined are behavior producing. Typically these 
modules might be an obstacle avoidance behavior, a 
standing up behavior, a gaze control behavior, etc. The 
components directly participate in producing behaviors 
such as avoiding obstacles, standing up, controlling gaze, 
etc. Intelligent functionality of the system, such as per­
ception, planning, modeling, learning, etc., emerges from 
the interaction of the components. 

Although this dualism between traditional and 
behavior­based systems looks pretty it is not completely 
accurate. Traditional systems have hardly ever been re­
ally connected to the world, and so the emergence of 
intelligent behavior is something more of an expectation 
in most cases, rather than an established phenomenon. 
Conversely, because of the many behaviors present in a 
behavior­based system, and their individual dynamics of 
interaction with the world, it is often hard to say that 



a particular series of actions was produced by a partic­
ular behavior. Sometimes many behaviors are operating 
simultaneously, or are switching rapidly [ H o r s w i l l a n d 
B r o o k s 86] , 

Over the years there has been a lot of work on emer­
gence based on the theme of self­organization (e.g., 
[Nicol is a n d P r igog ine 77]). Wi th in behavior­based 
robots there is beginning to be work at better charac­
terizing emergent functionality, but it is sti l l in its early 
stages, e.g., [Steels 90a]. He defines it as meaning that 
a function is achieved "indirectly by the interaction of 
more primitive components among themselves and with 
the world". 

It is hard to identify the seat of intelligence within any 
system, as intelligence is produced by the interactions of 
many components. Intelligence can only be determined 
by the total behavior of the system and how that behav­
ior appears in relation to the environment. 

The key idea from emergence is; 
Intelligence is in the eye of the observer. 

6 Thought 
Since late 1984 I have been building autonomous mobile 
robots in the 'Mobot Lab' at the M I T Artif icial Intell i­
gence Laboratory; [B rooks 86] gives the original ideas, 
and [Brooks 90b] contains a recent summary of the ca­
pabilities of the robots developed in my laboratory over 
the years. 

My work fits within the framework described above 
in terms of situatedness, embodiment, intelligence and 
emergence. In particular I have advocated situatedness, 
embodiment, and highly reactive architectures with no 
reasoning systems, no manipulable representations, no 
symbols, and totally decentralized computation. This 
different model of computation has lead to radically dif­
ferent models of thought, 

I have been accused of overstating the case that the 
new approach is all that is necessary to build truly in­
telligent systems. It has even been suggested that as an 
evangelist I have deliberately overstated my case to pull 
people towards the correct level of belief, and that re­
ally all along, I have known that a hybrid approach is 
necessary. 

That is not what I believe. I think that the new ap­
proach can be extended to cover the whole story, both 
with regards to building intelligent systems and to un­
derstanding human intelligence—the two principal goals 
identified for Artif icial Intelligence at the beginning of 
the paper. 

Whether I am right or not is an empirical question. 
Multiple approaches to Arti f icial Intelligence wi l l con­
tinue to be pursued. At some point we wil l be able to 
evaluate which approach has been more successful. 

In this section I want to outline the philosophical un­
derpinnings of my work, and discuss why I believe the 
approach is the one that wi l l in the end wil l prove dom­
inant. 

6.1 Pr inc ip les 

Al l research goes on within the constraints of certain 
principles. Sometimes these are explicit, and sometimes 

they are implicit. In the following paragraphs I outline 
as explicitly as I can the principles followed. 

The first set of principles defines the domain for the 
work. 

• The goal is to study complete integrated intelligent 
autonomous agents. 

• The agents should be embodied as mobile robots, 
situated in unmodified worlds found around our 
laboratory27. This confronts the embodiment issue. 
The environments chosen are for convenience, al­
though we strongly resist the temptation to change 
the environments in any way for the robots. 

• The robots should operate equally well when vis­
itors, or cleaners, walk through their workspace, 
when furniture is rearranged, when lighting or other 
environmental conditions change, and when their 
sensors and actuators drift in calibration. This con­
fronts the situatedness issue. 

• The robots should operate on timescales commen­
surate with the time scales used by humans. This 
too confronts the situatedness issue. 

The specific model of computation used was not orig­
inally based on biological models. It was one arrived at 
by continuously refining attempts to program a robot to 
reactively avoid collisions in a people­populated environ­
ment, [Brooks 86], Now, however, in stating the prin­
ciples used in the model of computation, it is clear that 
it shares certain properties with models of how neuro­
logical systems are arranged. It is important to empha­
size that it only shares certain properties. Our model 
of computation is not intended as a realistic model of 
how neurological systems work. We call our computa­
tion model the sub sumption architecture and its purpose 
is to program intelligent, situated, embodied agents. 

Our principles of computation are: 

• Computation is organized as an asynchronous net­
work of active computational elements (they are 
augmented finite state machines—see [Brooks 89] 
for details28), with a fixed topology network of uni­
directional connections. 

• Messages sent over connections have no implicit 
semantics—they are small numbers (typically 8 or 
16 bits, but on some robots just 1 bit) and their 
meanings are dependent on the dynamics designed 
into both the sender and receiver. 

■ Sensors and actuators are connected to this net­
work, usually through asynchronous two­sided 
buffers. 

27This constraint has slipped a little recently as we are 
working on building prototype small legged planetary rovers 
([Angle and Brooks 90]). We have built a special pur­
pose environment for the robots—a physically simulated lu­
nar surface. 

28For programming convenience we use a higher level ab­
straction known as the Behavior Language, documented in 
[Brooks 90c]. It compiles down to a network of machines 
as described above. 
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These principles lead to certain consequences. In par­
ticular: 

• The system can certainly have state—it is not at all 
constrained to be purely reactive. 

• Pointers and manipulable data structures are very 
hard to implement (since the model is Turing equiv­
alent it is of course possible, but hardly within the 
spirit). 

• Any search space must be quite bounded in size, 
as search nodes cannot be dynamically created and 
destroyed during the search process. 

• There is no implicit separation of data and com­
putation, they are both distributed over the same 
network of elements. 

In considering the biological observations outlined in 
section 4, certain properties seemed worth incorporating 
into the way in which robots are programmed within the 
given model of computation, In all the robots built in 
the mobot lab, the following principles of organization 
of intelligence have been observed: 

• There is no central model maintained of the world. 
A l l data is distributed over many computational el­
ements. 

• There is no central locus of control. 

• There is no separation into perceptual system, cen­
tral system, and actuation system. Pieces of the net­
work may perform more than one of these functions. 
More importantly, there is intimate intertwining of 
aspects of all three of them. 

• The behavioral competence of the system is im­
proved by adding more behavior­specific network to 
the existing network. We call this process layering. 
This is a simplistic and crude analogy to evolution­
ary development. As with evolution, at every stage 
of the development the systems are tested—unlike 
evolution there is a gentle debugging process avail­
able. Each of the layers is a behavior­producing 
piece of network in its own right, although it may 
implicit ly rely on presence of earlier pieces of net­
work. 

• There is no hierarchical arrangement—i.e., there is 
no notion of one process calling on another as a 
subroutine. Rather the networks are designed so 
that needed computations will simply be available 
on the appropriate input line when needed. There is 
no explicit synchronization between a producer and 
a consumer of messages. Message reception buffers 
can be overwritten by new messages before the con­
sumer has looked at the old one. It is not atypical 
for a message producer to send 10 messages for ev­
ery one that is examined by the receiver. 

• The layers, or behaviors, all run in parallel. There 
may need to be a conflict resolution mechanism 
when different behaviors try to give different actu­
ator commands. 

• The world is often a good communication medium 
for processes, or behaviors, within a single robot. 

It should be clear that these principles are quite dif­
ferent to the ones we have become accustomed to using 
as we program Von Neumann machines. It necessarily 
forces the programmer to use a different style of organi­
zation for their programs for intelligence. 

There are also always influences on approaches to 
building thinking machines that lie outside the realm 
of purely logical or scientific thought. The following, 
perhaps arbitrary, principles have also had an influence 
on the organization of intelligence that has been used in 
Mobot Lab robots: 

• A decision was made early on that all computation 
should be done onboard the robots. This was so 
that the robots could run tether­free and without 
any communication link. The idea is to download 
programs over cables (although in the case of some 
of our earlier robots the technique was to plug in a 
newly written erasable ROM) into non­volatile stor­
age on the robots, then switch them on to interact 
with and be situated in the environment. 

• In order to maintain a long term goal of being able 
to eventually produce very tiny robots ( [ F l y n n 87]) 
the computational model has been restricted so that 
any specification within that model could be rather 
easily compiled into a silicon circuit. This has put 
an additional constraint on designers of agent soft­
ware, in that they cannot use non­linear numbers 
of connections between collections of computational 
elements, as that would lead to severe silicon com­
pilation problems. Note that the general model of 
computation outlined above is such that a goal of 
silicon compilation is in general quite realistic. 

The point of section 3 was to show how the technol­
ogy of available computation had a major impact on the 
shape of the developing field of Artif icial Intelligence. 
Likewise there have been a number of influences on my 
own work that are technological in nature. These in­
clude: 

• Given the smallness in overall size of the robots 
there is a very real l imitation on the amount of 
onboard computation that can be carried, and by 
an earlier principle all computation must be done 
onboard. The l imi t ing factor on the amount of 
portable computation is not weight of the comput­
ers directly, but the electrical power that is available 
to run them. Empirically we have observed that the 
amount of electrical power available is proportional 
to the weight of the robot29. 

• Since there are many single chip microprocessors 
available including EEPROM and R A M , it is be­
coming more possible to include large numbers of 
sensors which require interrupt servicing, local cal­
ibration, and data massaging. The microprocessors 

29Jon Connell, a former member of the Mobot Lab, plotted 
data from a large number of mobile robots and noted the em­
pirical fact that there is roughly one watt of electrical power 
available for onboard computation for every pound of overall 
weight of the robot. We call this Connell 's Law. 
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can significantly reduce the overall wiring complex­
i ty by servicing a local group of sensors (e.g., all 
those on a single leg of a robot) in situ, and pack­
aging up the data to run over a communication net­
work to the behavior­producing network. 

These principles have been used in the programming of 
a number of behavior­based robots. Below we point out 
the importance of some of these robot demonstrations in 
indicating how the subsumption architecture (or one like 
it in spirit) can be expected to scale up to very intelligent 
applications. In what follows individual references are 
given to the most relevant piece of the literature. For 
a condensed description of what each of the robots is 
and how they are programmed, the reader should see 
[B rooks 90b j ; it also includes a number of robots not 
mentioned here. 

6.2 R e a c t i v i t y 
The earliest demonstration of the subsumption architec­
ture was on the robot Allen ( [B rooks 86]). It was al­
most entirely reactive, using sonar readings to keep away 
from people and other moving obstacles, while not col­
liding with static obstacles. It also had a non­reactive 
higher level layer that would select a goal to head to­
wards, and then proceed to that location while the lower 
level reactive layer took care of avoiding obstacles. 

The very first subsumption robot thus combined non­
reactive capabilities with reactive ones. But the impor­
tant point is that it used exactly the same sorts of com­
putational mechanism to do both. In looking at the 
network of the combined layers there was no obvious 
partit ion into lower and higher level components based 
on the type of information flowing on the connections, 
or the state machines that were the computational el­
ements. To be sure, there was a difference in function 
between the two layers, but there was no need to in­
troduce any centralization or explicit representations to 
achieve a higher level, or later, process having useful and 
effective influence over a lower level. 

The second robot, Herbert ( [Conne l l 89]), pushed on 
the reactive approach. It used a laser scanner to find 
soda can­like objects visually, infrared proximity sensors 
to navigate by following walls and going through door­
ways, a magnetic compass to maintain a global sense of 
orientation, and a host of sensors on an arm which were 
sufficient to reliably pick up soda cans. The task for Her­
bert was to wander around looking for soda cans, pick 
one up, and bung it back to where Herbert had started 
from. It was demonstrated reliably finding soda cans in 
rooms using its laser range finder (some tens of trials), 
picking up soda cans many times (over 100 instances), re­
liably navigating (many hours of runs), and in one finale 
doing all the tasks together to navigate, locate, pickup 
and return with a soda can30. 

In programming Herbert it was decided that it should 
maintain no state longer than three seconds, and that 
there would be no internal communication between be­
havior generating modules. Each one was connected to 

30The limiting factor on Herbert was the mechanical seat­
ing of its chips—its mean time between chip seating failure 
was no more than 15 minutes. 

sensors on the input side, and a fixed priority arbitration 
network on the output side. The arbitration network 
drove the actuators. 

In order to carry out its tasks, Herbert, in many in­
stances, had to use the world as its own best model and 
as a communication medium. E.g., the laser­based soda 
can object finder drove the robot so that its arm was 
lined up in front of the soda can. But it did not tell 
the arm controller that there was now a soda can ready 
to be picked up. Rather, the arm behaviors monitored 
the shaft encoders on the wheels, and when they noticed 
that there was no body motion, initiated motions of the 
arm, which in turn triggered other behaviors, so that 
eventually the robot would pick up the soda can. 

The advantage of this approach is was that there was 
no need to set up internal expectations for what was go­
ing to happen next; that meant that the control system 
could both (1) be naturally opportunistic if fortuitous 
circumstances presented themselves, and (2) it could eas­
ily respond to changed circumstances, such as some other 
object approaching it on a collision course. 

As one example of how the arm behaviors cascaded 
upon one another, consider actually grasping a soda can. 
The hand had a grasp reflex that operated whenever 
something broke an infrared beam between the fingers. 
When the arm located a soda can with its local sensors, 
it simply drove the hand so that the two fingers lined up 
on either side of the can. The hand then independently 
grasped the can. Given this arrangement, it was possible 
for a human to hand a soda can to the robot. As soon 
as it was grasped, the arm re t rac ted­ i t did not matter 
whether it was a soda can that was intentionally grasped, 
or one that magically appeared. The same opportunism 
among behaviors let the arm adapt automatically to a 
wide variety of cluttered desktops, and sti l l successfully 
find the soda can. 

In order to return to where it came from after picking 
up a soda can, Herbert used a trick. The navigation rou­
tines could carry implement rules such as: when passing 
through a door southbound, turn left. These rules were 
conditionahzed on the separation of the fingers on the 
hand. When the robot was outbound with no can in 
its hand, it effectively executed one set of rules. After 
picking up a can, it would execute a different set. By 
carefully designing the rules, Herbert was guaranteed, 
with reasonable reliability, to retrace its path. 

The point of Herbert is two­fold. 

• It demonstrates complex, apparently goal directed 
and intentional, behavior in a system which has no 
long term internal state and no internal communi­
cation. 

• It is very easy for an observer of a system to at­
tribute more complex internal structure than really 
exists. Herbert appeared to be doing things like 
path planning and map building, even though it was 
not. 

6.3 Represen ta t ion 
My earlier paper [Brooks 91a] is often criticized for ad­
vocating absolutely no representation of the world within 
a behavior­based robot. This criticism is invalid. I make 
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it clear in the paper that I reject traditional Artif icial 
Intelligence representation schemes (see section 5). I 
also made it clear that I reject explicit representations 
of goals wi th in the machine. 

There can, however, be representations which are par­
t ial models of the world—in fact I mentioned that " in ­
dividual layers extract only those aspects of the world 
which they find relevant—projections of a representation 
into a simple subspace" [Brooks 91a]. The form these 
representations take, wi th in the context of the computa­
tional model we are using, wil l depend on the particular 
task those representations are to be used for. For more 
general navigation than that demonstrated by Connelt 
it may sometimes31 need to build and maintain a map. 

[ M a t a r i c DO, 91] introduced active­constructive rep­
resentations to subsurnption in a sonar­based robot, 
Toto, which wandered around office environments build­
ing a map based on landmarks, and then used that map 
to get from one location to another. Her representa­
tions were totally decentralized and non­manipulable, 
and there is certainly no central control which build, 
maintains, or uses the maps. Rather, the map itself is 
an active structure which does the computations neces­
sary for any path planning the robot needs to do. 

Primitive layers of control let Toto wander around fol­
lowing boundaries (such as walls and furniture clutter) 
in an indoor environment. A layer which detects land­
marks, such as flat clear walls, corridors, etc., runs in 
parallel. It informs the map layer as its detection cer­
tainty exceeds a fixed threshold. The map is represented 
as a graph internally. The nodes of the graph are compu­
tational elements (they are identical l i tt le subnetworks 
of distinct augmented finite state machines). Free nodes 
arbitrate and allocate themselves, in a purely local fash­
ion, to represent a new landmark, and set up topological 
links to physically neighboring nodes (using a limited ca­
pacity switching network to keep the total virtual 'wire 
length' between finite state machines to be linear in the 
map capacity). These nodes keep track of where the 
robot is physically, by observing changes in the output 
of the landmark detector, and comparing that to pre­
dictions they have made by local message passing, and 
by referring to other more primitive (magnetic compass 
based) coarse position estimation schemes. 

When a higher layer wants the robot to go to some 
known landmark, it merely 'excites', in some particular 
way the particular place in the map that it wants to 
go. The excitation (this is an abstraction programmed 
into the particular finite state machines used here—it is 
not a primitive—as such there could be many different 
types of excitation co­existing in the map, if other types 
of planning are required) is spread through the map fol­
lowing topological links, estimating total path link, and 
arriving at the landmark­thai­I'm­at­now node (a deictic 
representation) wi th a recommendation of the direction 
to travel right now to follow the shortest path. As the 
robot moves so to does its representation of where it 

31 Note that we are saying only sometimes, not must—there 
are many navigation tasks doable by mobile robots which 
appear intelligent, but which do not require map information 
at all. 
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is, and at that new node the arriving excitation tells it 
where to go next. The map thus bears a similarity to the 
internalized plans of [Pay ton 90] , but it represented by 
the same computational elements that use it—there is 
no distinction between data and process. Furthermore 
Mataric's scheme can have multiple simultaneously ac­
tive goals—the robot wi l l simply head towards the near­
est one. 

This work demonstrates the following aspects of 
behavior­based or subsurnption systems: 

• Such systems can make predictions about what wil l 
happen in the world, and have expectations. 

• Such systems can make plans—but they are not the 
same as traditional Art i f icial Intelligence plans—see 
[Ag re a n d C h a p m a n 90] for an analysis of this 
issue. 

• Such systems can have goals—see [Maes 90b] for 
another way to implement goals within the ap­
proach. 

• A l l these things can be done without resorting to 
central representations. 

• A l l these things can be done without resorting to 
manipulable representations. 

• A l l these things can be done without resorting to 
symbolic representations. 

6.4 C o m p l e x i t y 

Can subsumption­like approaches scale to arbitrarily 
complex systems? This is a question that cannot be an­
swered affirmatively right now—just as it is totally un­
founded to answer the same question affirmatively in the 
case of traditional symbolic Art i f icial Intelligence meth­
ods. The best one can do is point to precedents and 
trends. 

There are a number of dimensions along which the 
scaling question can be asked. E.g., 

• Can the approach work well as the environment be­
comes more complex? 

• Can the approach handle larger numbers of sensors 
and actuators? 

• Can the approach work smoothly as more and more 
layers or behaviors are added? 

We answer each of these in turn in the following para­
graphs. 

The approach taken at the Mobot Lab has been that 
from day one always test the robot in the most complex 
environment for which it is ult imately destined. This 
forces even the simplest levels to handle the most com­
plex environment expected. So for a given robot and 
intended environment the scaling question is handled by 
the methodology chosen for implementation. But there 
is also the question of how complex are the environ­
ments that are targeted for wi th the current generation 
of robots. Almost all of our robots have been tested and 
operated in indoor environments with people unrelated 
to the research wandering through their work area at 
wi l l . Thus we have a certain degree of confidence that 



the same basic approach wi l l work in outdoor environ­
ments (the sensory processing wil l have to change for 
some sensors) wi th other forms of dynamic action tak­
ing place. 

The number of sensors and actuators possessed by to­
day's robots are pit i ful when compared to the numbers in 
even simple organisms such as insects. Our first robots 
had only a handful of identical sonar sensors and two mo­
tors. Later a six legged walking robot was buil t [Ang le 
89], It had 12 actuators and 20 sensors, and was suc­
cessfully programmed in subsumption ( [Brooks 89]) to 
walk adaptively over rough terrain. The key was to find 
the right factoring into sensor and actuator subsystems 
so that interactions between the subsystems could be 
minimized. A new six legged robot, recently completed 
( [Brooks a n d A n g l e 90] , is much more challenging, 
but stil l nowhere near the complexity of insects. It has 23 
actuators and over 150 sensors. W i th this level of sens­
ing it is possible to start to develop some of the 'senses' 
that animals and humans have, such as a kinesthetic 
sense—this comes from the contributions of many sen­
sor readings. Rather, than feed into a geometric model 
the sensors into a estimate of bodily motion. There is 
also the question of the types of sensors used. [Ho rsw i l l 
and B rooks 88] generalized the subsumption architec­
ture so that some of the connections between processing 
elements could be a retina bus, a cable that transmit­
ted partially processed images from one site to another 
within the system. The robot so programmed was able to 
follow corridors and follow moving objects in real time. 

As we add more layers we find that the interactions 
can become more complex. [Maes 89] introduced the 
notion of switching whole pieces of the network on and 
ofT, using an activation scheme for behaviors. That idea 
is now incorporated into the subsumption methodology 
[Brooks 90c], and provides a way of implementing both 
competition and cooperation between behaviors. At a 
lower level a hormone­like system has been introduced 
( [Brooks 91b]) which models the hormone system of 
the lobster [ K r a v i t z 88] ( [ A r k i n 88] had implemented 
a system with similar inspiration). Wi th these additional 
control mechanisms we have certainly bought ourselves 
breathing room to increase the performance of our sys­
tems markedly. The key point about these control sys­
tems is that they fit exactly into the existing structures, 
and are totally distributed and local in their operations. 

6.5 Lea rn ing 

Evolution has decided that there is a tradeoff between 
what we know through our genes and what we must find 
out for ourselves as we develop. We can expect to see a 
similar tradeoff for our behavior­based robots. 

There are at least four classes of things that can be 
learned: 

1. representations of the world that help in some task 

2. aspects of instances of sensors and actuators (this is 
sometimes called calibration) 

3. the ways in which individual behaviors should in­
teract 

4. new behavioral modules 

The robots in the Mobot Lab have been programmed 
to demonstrate the first three of these types of learning. 
The last one has not yet been successfully tackled32 

Learning representations of the world was already dis­
cussed above concerning the work of [ M a t a r i c 90 , 91]. 
The next step wi l l be to generalize active­constructive 
representations to more classes of use. 

[V io l a 90] demonstrated calibration of a complex 
head­eye system modeling the primate vestibulo­ocular 
system. In this system there is one fast channel between 
a gyroscope and a high performance pan­ti l t head hold­
ing the camera, and a slower channel using vision which 
produces correction signals for the gyroscope channel. 
The same system was used to learn how to accurately 
saccade to moving stimuli. 

Lastly, [Maes a n d B r o o k s 90] programmed an early 
six legged robot to learn to walk using the subsumption 
architecture along wi th the behavior activation schemes 
of [Maes 89]. Independent behaviors on each leg moni­
tored the activity of other behaviors and correlated that, 
their own activity state, and the results from a belly 
switch which provided negative feedback, as input to a 
local learning rule which learned under which conditions 
it was to operate the behavior. After about 20 trials per 
leg, spread over a total of a minute or two, the robot re­
liably learns the alternating tr ipod gait—it slowly seems 
to emerge out of init ially chaotic flailing of the legs. 

Learning within subsumption is in its early stages but 
it has been demonstrated in a number of different critical 
modes of development. 

6.6 V i s tas 

The behavior­based approach has been demonstrated on 
situated embodied systems doing things that traditional 
Art i f icial Intelligence would have tackled in quite differ­
ent ways. What are the key research areas that need 
to be addressed in order to push behavior­based robots 
towards more and more sophisticated capabilities? 

In this section we outline research challenges in three 
categories or levels 33: 

• Understanding the dynamics of how an individ­
ual behavior couples with the environment via the 
robot's sensors and actuators. The primary con­
cerns here are what forms of perception are neces­
sary, and what relationships exist between percep­
t ion, internal state, and action (i.e., how behavior 
is specified or described). 

• Understanding how many behaviors can be inte­
grated into a single robot. The primary concerns 
here are how independent various perceptions and 
behaviors can be, how much they must rely on, and 
interfere wi th each other, how a competent com­
plete robot can be buil t in such a way as to accom­
modate all the required individual behaviors, and 

We did have a failed attempt at this through simulated 
evolution—this is the approach taken by many in the Artifi­
cial Life movement. 

33The reader is referred to [Brooks 90a] for a more com­
plete discussion of these issues. 
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to what extent apparently complex behaviors can 
emerge from simple reflexes. 

• Understanding how multiple robots (either a homo­
geneous, or a heterogeneous group) can interact as 
they go about their business. The primary concerns 
here are the relationships between individuals' be­
haviors , the amount and type of communication be­
tween robots, the way the environment reacts to 
multiple individuals, and the resulting patterns of 
behavior and their impacts upon the environment 
(which night not occur in the case of isolated indi­
viduals). 

Just as research in Artif icial Intelligence is broken into 
subfields, these categories provide subfields of behavior­
based robots within which it is possible to concentrate a 
particular research project. Some of these topics are the­
oretical in nature, contributing to a science of behavior­
based systems. Others are engineering in nature, provid­
ing tools and mechanisms for successfully building and 
programming behavior­based robots. Some of these top­
ics have already been touched upon by researchers in 
behavior­based approaches, but none of them are yet 
solved or completely understood. 

At the individual behavior level some of the important 
issues are as follows; 
Convergence: Demonstrate or prove that a specified 

behavior is such that the robot wil l indeed carry 
out the desired task successfully. For instance, we 
may want to give some set of init ial conditions for 
a robot, and some limitations on possible worlds in 
which it is placed, and show that under those condi­
tions, the robot is guaranteed to follow a particular 
wall, rather than diverge and get lost. 

Synthesis: Given a particular task, automatically de­
rive a behavior specification for the creature so that 
it carries out that task in a way which has clearly 
demonstrable convergence. I do not expect progress 
in this topic in the near future. 

C o m p l e x i t y : Deal with the complexity of real world 
environments, and sift out the relevant aspects of 
received sensations rather than being overwhelmed 
with a multitude of data. 

Lea rn ing : Develop methods for the automatic acqui­
sition of new behaviors, and the modification and 
tuning of existing behaviors. 

As multiple behaviors are built into a single robot the 
following issues need to be addressed: 

Coherence: Even though many behaviors may be ac­
tive at once, or are being actively switched on or 
off, the robot should sti l l appear to an observer to 
have coherence of action and goals. It should not 
be rapidly switching between inconsistent behav­
iors, nor should two behaviors be active simultane­
ously, if they interfere with each other to the point 
that neither operates successfully. 

Relevance: The behaviors that are active should be rel­
evant to the situation the robot finds itself in—e.g., 
it should recharge itself when the batteries are low, 
not when they are ful l . 
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Adequacy : The behavior selection mechanism must 
operate in such a way that the long term goals that 
the robot designer has for the robot are met—e.g., 
a floor cleaning robot should successfully clean the 
floor in normal circumstances, besides doing all the 
ancillary tasks that are necessary for it to be suc­
cessful at that. 

Represen ta t ion : Mult iple behaviors might want to 
share partial representations of the world—in fact 
the representations of world aspects might generate 
multiple behaviors when activated appropriately. 

Lea rn ing : The performance of a robot might be im­
proved by adapting the ways in which behaviors in­
teract, or are activated, as a result of experience. 

When many behavior­based robots start to interact 
there are a whole new host of issues which arise. Many of 
these same issues would arise if the robots were buil t us­
ing traditional Artif icial Intelligence methods, but there 
has been very l i t t le published in these areas. 

Emergence: Given a set of behaviors programmed into 
a set of robots, we would like to be able to predict 
what the global behavior of the system will be, and 
as a consequence determine the differential effects of 
small changes to the individual robots on the global 
behavior. 

Synthesis: AS at single behavior level, given a particu­
lar task, automatically derive a program for the set 
of robots so that they carry out the task. 

C o m m u n i c a t i o n : Performance may be increased by 
increasing the amount of explicit communication 
between robots, but the relationship between the 
amount of communication increase and performance 
increase needs to be understood. 

C o o p e r a t i o n : In some circumstances robots should be 
able to achieve more by cooperating—the form and 
specification of such possible cooperations need to 
be understood. 

In te r fe rence : Robots may interfere with one another. 
Protocols for avoiding this when it is undesirable 
must be included in the design of the creatures' in­
structions. 

Dens i t y dependence: The global behavior of the sys­
tem may be dependent on the density of the crea­
tures and the resources they consume within the 
world. A characterization of this dependence is de­
sirable. At the two ends of the spectrum it may be 
the case that (a) a single robot given n units of time 
performs identically to n robots each given 1 unit of 
time, and (2) the global task might not be achieved 
at all if there are fewer than, say, m robots. 

I n d i v i d u a l i t y : Robustness can be achieved if all robots 
are interchangeable. A fixed number of classes of 
robots, where all robots within a class are identi­
cal, is also robust, but somewhat less so. The issue 
then is to, given a task, decide how many classes of 
creatures are necessary 

Lea rn ing : The performance of the robots may increase 
in two ways through learning. At one level, when 



one robot learns some skill if might be able to trans­
fer it to another. At another level, the robots might 
learn cooperative strategies. 

These are a first cut at topics of interest within 
behavior­based approaches. As we explore more we wi l l 
find more topics, and some that seem interesting now 
wil l turn out to be irrelevant. 

6.7 Thinking 
Can this approach lead to thought? How could it? It 
seems the antithesis of thought. But we must ask first, 
what is thought? Like intelligence this is a very slippery 
concept. 

We only know that thought exists in biological systems 
through our own introspection. At one level we identify 
thought with the product of our consciousness, but that 
too is a contentious subject, and one which has had l i t t le 
attention from Artif icial Intelligence. 

My feeling is that thought and consciousness are epi­
phenomena of the process of being in the world. As 
the complexity of the world increases, and the complex­
ity of processing to deal with that world rises, we wil l 
see the same evidence of thought and consciousness in 
our systems as we see in people other than ourselves 
now. Thought and consciousness wil l not need to be 
programmed in. They wil l emerge. 

7 Conc lus ion 

The tit le of this paper is intentionally ambiguous. 
The following interpretations all encapsulate important 
points. 

• An earlier paper [Brooks 91a]3 4 was tit led Iniel l i­
gevce without Representation. The thesis of that pa­
per was that intelligent behavior could be generated 
without having explicit manipulable internal repre­
sentations. Intelligence without Reason is thus com­
plementary, stating that intelligent behavior can be 
generated without having explicit reasoning systems 
present. 

• Intelligence without Reason can be read as a state­
ment that intelligence is an emergent property of 
certain complex systems­—it sometimes arises wi th­
out an easily identifiable reason for arising. 

• Intelligence without Reason can be viewed as a com­
mentary on the bandwagon effect in research in gen­
eral, and in particular in the case of Artif icial Intelli­
gence research. Many lines of research have become 
goals of pursuit in their own right, with l i tt le re­
call of the reasons for pursuing those lines. A l i t t le 
grounding occasionally can go a long way towards 
helping keep things on track. 

• Intelligence without Reason is also a commentary 
on the way evolution built intelligence—rather than 
reason about how to build intelligent systems, it 
used a generate and test strategy. This is in stark 
contrast to the way all human endeavors to build 

34Despite the publication date it was wri t ten in 1986 and 
1987T and was complete in its published form in 1987. 

intelligent systems must inevitably proceed. Fur­
thermore we must be careful in emulating the re­
sults of evolution—there may be many structures 
and observable properties which are suboptimal or 
vestigial. 

We are a long way from creating Artif icial Intelligences 
that measure up the to the standards of early ambitions 
for the field. It is a complex endeavor and we sometimes 
need to step back and question why we are proceeding 
in the direction we are going, and look around for other 
promising directions. 
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