
Game-Tree Properties and MCTS Performance

Hilmar Finnsson and Yngvi Björnsson
School of Computer Science
Reykjavı́k University, Iceland

{hif,yngvi}@ru.is

Abstract

In recent years Monte-Carlo Tree Search (MCTS) has be-
come a popular and effective search method in games, sur-
passing traditional αβ methods in many domains. The ques-
tion of why MCTS does better in some domains than in others
remains, however, relatively open. In here we identify some
general properties that are encountered in game trees and
measure how these properties affect the success of MCTS.
We do this by running it on custom-made games that allow us
to parameterize various game properties in order for trends to
be discovered. Our experiments show how MCTS can favor
either deep, wide or balanced game trees. They also show
how the level of game progression relates to playing strength
and how disruptive Optimistic Move can be.

Introduction
Monte-Carlo simulations play out random sequences of ac-
tions in order to make an informed decision based on ag-
gregation of the simulations end results. The most ap-
pealing aspect of this approach is the absence of heuristic
knowledge for evaluating game states. Monte-Carlo Tree
Search (MCTS) applies Monte-Carlo simulations to tree-
search problems, and has nowadays become a fully matured
search method with well defined parts and many extensions.
In recent years MCTS has done remarkably well in many do-
mains. The reason for its now diverse application in games
is mostly due to its successful application in the game of Go
(Gelly et al. 2006; Enzenberger and Müller 2009), a game
where traditional search methods were ineffective in elevat-
ing the state-of-the-art to the level of human experts.

Other triumphs of MCTS include games such as Amazons
(Lorentz 2008), Lines-of-Action (Winands, Björnsson, and
Saito 2010), Chinese Checkers (Sturtevant 2008), Spades
and Hearts (Sturtevant 2008) and Settlers of Catan (Szita,
Chaslot, and Spronck 2009).

MCTS is also applied successfully in General Game
Playing(GGP) (Finnsson and Björnsson 2008), where it out-
plays more traditional heuristic-based players in many types
of games. However, in other type of games, such as many
chess-like variants, the MCTS-based GGP agents are hope-
less in comparison to their αβ-based counterparts.

This raises the questions of which game-tree properties
inherit to the game at hand make the game suited for MCTS

or not. Having some idea of the answers to these ques-
tions can be helpful in deciding if a problem should be at-
tacked with MCTS, and then using which algorithmic en-
hancements.

In this paper we identify high level properties that are
commonly found in game trees to a varying degree and mea-
sure how they affect the performance of MCTS. As a testbed
we use simple custom made games that both highlight and
allow us to vary the properties of interest. The main con-
tribution of the paper is the insight it gives into how MCTS
behaves when faced with different game properties.

The paper is structured as follows. In the next section we
give a brief overview of MCTS and go on to describing the
game-tree properties investigated. Thereafter we detail the
experiments we conducted and discuss the results. Finally
related work is acknowledged before concluding.

Monte-Carlo Tree Search
MCTS runs as many Monte-Carlo simulations as possible
during its deliberation time in order to form knowledge de-
rived from their end results. This knowledge is collected into
a tree-like evaluation function mimicking a manageable part
of the game-tree. In this paper we talk about the game tree
when referring to the game itself, but when we talk about
the MCTS tree we are referring to the tree MCTS builds in
memory. When time is up the action at the root which is
estimated to yield the highest reward is chosen for play.

MCTS breaks its simulation down into a combination of
four well defined strategic phases or steps, each with a dis-
tinct functionality that may be extended independent of the
other phases. These phases are: selection, playout, expan-
sion, and back-propagation.

Selection - When the first simulation is started there is no
MCTS tree in memory, but it builds up as the simulations
run. The Selection phase lasts while the simulation is still at
a game tree node which is a part of the MCTS tree. In this
phase informed action selection can be made as we have the
information already gathered in the tree. For action selection
we use a search policy which has the main focus of balanc-
ing exploration/exploitation tradeoff. One can select from
multiple methods to implement here, but one of the more
popular has been the Upper Confidence Bounds applied to
Trees (UCT) algorithm (Kocsis and Szepesvári 2006). UCT
selects action a in state s from the set of available actions

A(s) given the formula:

a∗ = argmaxa∈A(s)

{
Avg(s, a) + 2 ∗ Cp

√
lnCnt(s)
Cnt(s, a)

}
Here Avg(s, a) gives the average reward observed when

simulations have included taking action a in state s. The
function Cnt returns the number of times state s has been
visited on one hand and how often action a has been selected
in state s during simulation on the other hand. In (Kocsis and
Szepesvári 2006) the authors show that when the rewards lie
in the interval [0, 1] havingCp = 1/

√
2 gives the least regret

for the exploration/exploitation tradeoff.
Playout - This phase begins when the simulations exit the

MCTS tree and have no longer any gathered information to
lean on. A common strategy here is just to play uniformly
at random, but methods utilizing heuristics or generalized
information from the MCTS tree exist to bias the this section
of the simulation towards a more descriptive and believable
path. This results in more focused simulations and is done
in effort to speed up the convergence towards more accurate
values within the MCTS tree.

Expansion - Expansion refers here to the in-memory tree
MCTS is building. The common strategy here is just to
add the first node encountered in the playout step (Coulom
2006). This way the tree grows most where the selection
strategy believes it will encounter its best line of play.

Back-Propagation - This phase controls how the end re-
sult of the MC simulations are used to update the knowledge
stored in the MCTS tree. This is usually just maintaining the
average expected reward in each node that was traversed dur-
ing the course of the simulation. It is easy to expand on this
with things like discounting to discriminate between equal
rewards reachable at different distances.

Game-Tree Properties
Following are tree properties we identified as being impor-
tant for MCTS performance and are general enough to be
found in a wide variety of games. It is by no means a com-
plete list.

Tree Depth vs. Branching Factor
The most general and distinct properties of game trees are
their depth and their width, so the first property we investi-
gate is the balance between the tree depth and the branching
factor. These are properties that can quickly be estimated as
simulations are run. With increasing depth the simulations
become longer and therefore decrease the number of sam-
ples that make up the aggregated values at the root. Also
longer simulations are in more danger of resulting in im-
probable lines of simulation play. Increasing the branching
factor results in a wider tree, decreasing the proportion of
lines of play tried. Relative to the number of nodes in the
trees the depth and width can be varied, allowing us to an-
swer the question if MCTS favors one over the other.

Progression
Some games progress towards a natural termination with ev-
ery move made while other allow moves that maintain a sta-

tus quo. Examples of naturally progressive games are Con-
nect 4, Othello and Quarto, while on the other end of the
spectrum we have games like Skirmish, Chess and Bomber-
man. Games that can go on infinitely often have some maxi-
mum length imposed on them. When reaching this length
either the game results in a draw or is scored based on
the current position. This is especially common in GGP
games. When such artificial termination is applied, progres-
sion is affected because some percentage of simulations do
not yield useful results. This is especially true when all arti-
ficially terminated positions are scored as a draw.

Optimistic Moves
Optimistic moves is a name we have given moves that
achieve very good result for its player assuming that the op-
ponent does not realize that this seemingly excellent move
can be refuted right away. The refutation is usually accom-
plished by capturing a piece that MCTS thinks is on its
way to ensure victory for the player. This situation arises
when the opponent’s best response gets lost among the other
moves available to the simulation action selection policies.
In the worst case this causes the player to actually play the
optimistic move and lose its piece for nothing. Given enough
simulations MCTS eventually becomes vice to the fact that
this move is not a good idea, but at the cost of running many
simulations to rule out this move as an interesting one. This
can work both ways as the simulations can also detect such
a move for the opponent and thus waste simulations on a
preventive move when one is not needed.

Empirical Evaluation
We used custom made games for evaluating the aforemen-
tioned properties, as described in the following setup subsec-
tion. This is followed by subsections detailing the individual
game property experiments and their results.

Setup
All games have players named White and Black and are
turn-taking with White going first. The experiments were
run on Linux based dual processor Intel(R) Xeon(TM)
3GHz and 3.20GHz CPU computers with 2GB of RAM.
Each experiment used a single processor.

All games have a scoring interval of [0, 1] and MCTS uses
Cp = 1/

√
2 with an uniform random playout strategy. The

node expansion strategy adds only the first new node en-
countered to the MCTS tree and neither a discount factor nor
other modifiers are used in the back-propagation step. The
players only deliberate during their own turn. A custom-
made tool is used to create all games and agents. This tool
allows games to be setup as FEN strings1 for boards of any
size and by extending the notation one can select from cus-
tom predefined piece types. Additional parameters are used
to set game options like goals (capture all opponents or reach
the back rank of the opponent), artificial termination depth
and scoring policy, and whether squares can inflict penalty
points.

1Forsyth-Edwards Notation. http://en.wikipedia.org/wiki/FEN

ia hgfedcb

8

7

6

5

4

3

2

1

ia hgfedcb

8

7

6

5

4

3

2

1

ia hgfedcb

8

7

6

5

4

3

2

1

Figure 1: (a)Penalties Game (b)Shock Step Game (c)Punishment Game

Figure 2: (a)Penalties Results (b)Shock Step Results (c)Punishment results

Tree Depth vs. Branching Factor
The games created for this experiment can be thought of
as navigating runners through an obstacle course where
the obstacles inflict penalty points. We experimented with
three different setups for the penalties as shown in Figure
1. The pawns are the runners, the corresponding colored
flags their goal and the big X’s walls that the runners can-
not go through. The numbered squares indicate the penalty
inflicted when stepped on. White and Black each control a
single runner that can take one step forward each turn. The
board is divided by the walls so the runners will never collide
with each other. For every step the runner takes the players
can additionally select to make the runner move to any other
lane on their side of the wall. For example, on its first move
in the setups in Figure 1 White could choose from the moves
a1-a2, a1-b2, a1-c2 and a1-d2. All but one of the lanes
available to each player incur one or more penalty points.
The game is set up as a turn taking game but both play-
ers must make equal amount of moves and therefore both
will have reached the goal before the game terminates. This
helps in keeping the size of the tree more constant. The win-
ner is the one that has fewer penalty points upon game ter-
mination. The optimal play for White is to always move on
lane a, resulting in finishing with no penalty points, while for
Black the optimal lane is always the one furthest to the right.
This game setup allows the depth of the tree to be tuned by
setting the lanes to a different length. The branching factor
is tuned through the number of lanes per player. To ensure

that the amount of tree nodes does not collapse with all the
transpositions possible in this game, the game engine pro-
duces state ids that depend on the path taken to the state it
represents. Therefore states that are identical will be per-
ceived as different ones by the MCTS algorithm if reached
through different paths. This state id scheme was only used
for the experiments in this subsection.

The first game we call Penalties and can be seen in Figure
1 (a). Here all lanes except for the safe one have all steps
giving a penalty of one. The second one we call Shock Step
and is depicted in Figure 1 (b). Now each non-safe lane has
the same amount of penalty in every step but this penalty
is equal to the distance from the safe lane. The third one
called Punishment is shown in Figure 1 (c). The penalty
amount is now as in the Shock Step game except now it gets
progressively larger the further the runner has advanced.

We set up races for the three games with all combinations
of lanes of length 4 to 20 squares and number of lanes from
2 to 20. We ran 1000 games for each data point. MCTS runs
all races as White against an optimal opponent that always
selects the move that will traverse the course without any
penalties. MCTS was allowed 5000 node expansions per
move for all setups. The results from these experiments are
shown in Figure 2. The background depicts the trend in how
many nodes there are in the game trees related to number of
lanes and their length. The borders where the shaded areas
meet are node equivalent lines, that is, along each border all
points represent the same node count. When moving from

the bottom left corner towards the top right one we are in-
creasing the node count exponentially. The lines, called win
lines, overlaid are the data points gathered from running the
MCTS experiments. The line closest to the bottom left cor-
ner represent the 50% win border (remember the opponent is
perfect and a draw is the best MCTS can get). Each border-
line after that shows a 5% lower win ratio from the previous
one. This means that if MCTS only cares how many nodes
there are in the game tree and its shape has no bearing on
the outcome, then the win lines should follow the trend of
the background plot exactly.

The three game setups all show different behaviors related
to how depth and branching factor influence the strength of
MCTS. When the penalties of any of the sub-optimal moves
are minimal as in the first setup, bigger branching factor
seems to have almost no effect on how well the player does.
This is seen by the fact that when the number of nodes in the
game tree increases due to more lanes, the win lines do not
follow the trend of the node count which moves down. They
stay almost stationary at the same depth.

As soon as the moves can do more damage as in the sec-
ond game setup we start to see quite a different trend. Not
only does the branching factor drag the performance down,
it does so at a faster rate than the node count in the game
tree is maintained. This means that MCTS is now prefer-
ring more depth over bigger branching factor. Note that as
the branching factor goes up so does the maximum penalty
possible.

In the third game the change in branching factor keeps on
having the same effect as in the second one. In addition,
now that more depth also raises the penalties, MCTS also
declines in strength if the depth becomes responsible for the
majority of game tree nodes. This is like allowing the play-
ers to make bigger and bigger mistakes the closer they get to
the goal. This gives us the third trend where MCTS seems
to favor a balance between the tree depth and the branching
factor.

To summarize MCTS does not have a definite favorite
when it comes to depth and branching factor and its strength
cannot be predicted from those properties only. It appears
to be dependent on the rules of the game being played. We
show that games can have big branching factors that pose
no problem for MCTS. Still with very simple alterations to
our abstract game we can see how MCTS does worse with
increasing branching factor and can even prefer a balance
between it and the tree depth.

Progression
For experimenting with the progression property we created
a racing game similar to the one used in the tree depth vs.
width experiments. Here, however, the size of the board is
kept constant (20 lanes × 10 rows) and the runners are con-
fined to their original lane by not being allowed to move
sideways. Each player, White and Black, has two types
of runners, ten in total, initially set up as shown in Figure
3. The former type, named active runner and depicted as a
pawn, moves one step forward when played whereas the sec-
ond, named inactive runner and depicted by circular arrows,
stays on its original square when played. In the context of

Figure 3: Progression Game

GGP each inactive runner has only a single noop move avail-
able for play. By changing the ratio between runner types
a player has, one can alter the progression property of the
game: the more active runners there are, the faster the game
progresses (given imperfect play). In the example shown
in the figure each player has 6 active and 4 inactive run-
ners. The game terminates with a win once a player’s runner
reaches a goal square (a square with the same colored flag).

We also impose an upper limit on the number of moves a
game can last. A game is terminated artificially and scored
as a tie if neither player has reached a goal within the upper
limit of moves. By changing the limit one can affect the pro-
gression property of the game: the longer a game is allowed
to last the more likely it is to end in a naturally resulting goal
rather than being depth terminated, thus progressing better.
We modify this upper limit of moves in fixed step sizes of
18, which is the minimum number of moves it takes Black
to reach a goal (Black can first reach a flag on its 9th move,
which is the 18th move of the game as White goes first).
A depth factor of one thus represents an upper limit of 18
moves, depth factor of two 36 moves, etc.

In the experiments that follow we run multiple matches
of different progression, one for each combination of the
number of active runners ([1-10]) and the depth factor ([1-
16]). Each match consists of 2000 games where MCTS
plays White against an optimal Black player always moving
the same active runner. The computing resources of MCTS
is restricted to 100,000 node expansions per move.

The result is shown in Figure 4, with the winning per-
centage of MCTS plotted against both the depth factor (left)
and percentage of simulations ending naturally (right). Each
curve represents a game setup using different number of ac-
tive runners.2 The overall shape of both plots show the same
trend, reinforcing that changing the depth factor is a good
model for indirectly altering the number of simulations that
terminate naturally (which is not easy to change directly in
our game setup). When looking at each curve in an isolation
we see that as the depth factor increases, so does MCTS’s
performance initially, but then it starts to decrease again. In-
creasing the depth factor means longer, and thus fewer, sim-
ulations because the number of node expansions per move

2We omit the 5, 7, and 9 active runners curves from all plots to
make them less cluttered; the omitted curves follow the same trend
as the neighboring ones.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
C

TS
 W

in
 %

Depth Factor

1	
 Ac%ve	

2	
 Ac%ve	

3	
 Ac%ve	

4	
 Ac%ve	

6	
 Ac%ve	

8	
 Ac%ve	

10	
 Ac%ve	

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
C

TS
 W

in
 %

Simulation Ended with Natural Result %

1	
 Ac%ve	

2	
 Ac%ve	

3	
 Ac%ve	

4	
 Ac%ve	

6	
 Ac%ve	

8	
 Ac%ve	

10	
 Ac%ve	

Figure 4: Progression Depth Factor: Fixed Node Expansion Count

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
C

TS
 W

in
 %

Depth Factor

1	
 Ac%ve	

2	
 Ac%ve	

3	
 Ac%ve	

4	
 Ac%ve	

6	
 Ac%ve	

8	
 Ac%ve	

10	
 Ac%ve	

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
C

TS
 W

in
 %

Simulation Ended with Natural Result %

1	
 Ac%ve	

2	
 Ac%ve	

3	
 Ac%ve	

4	
 Ac%ve	

6	
 Ac%ve	

8	
 Ac%ve	

10	
 Ac%ve	

Figure 5: Progression Depth Factor: Fixed Simulation Count

is fixed. The decremental effect can thus be explained by
fewer simulations. This is better seen in Figure 5 where the
result of identical experiments as in the previous figure is
given, except now the number of simulations —as opposed
to node expansions— is kept fixed (at 1000).

The above results show that progression is an important
property for MCTS, however, what is somewhat surprising
is how quickly MCTS’s performance improves as the per-
centage of simulations ending at true terminal states goes up.
In our testbed it already reaches close to peak performance
as early as 30%. This shows promise for MCTS even in
games where most paths may be non-progressive, as long as
a somewhat healthy ratio of the simulations terminate in use-
ful game outcomes. Additionally, in GGP one could take ad-
vantage of this in games where many lines end with the step
counter reaching the upper limit, by curtailing the simula-
tions even earlier. Although this would result in a somewhat
lower ratio of simulations returning useful game outcomes,
it would result in more simulations potentially resulting in a
better quality tradeoff (as in Figure 4).

We can see the effects of changing the other dimension —
number of active runners a player has— by contrasting the
different curves in the plots. As the number of active run-
ners increases, so does the percentage of simulations end-
ing in true terminal game outcomes, however, instead of
resulting in an improved performance, it decreases sharply.
This performance drop is seen clearly in Figure 6 when plot-
ted against the number of active runners (for demonstration,
only a single depth factor curve is shown). This behavior,

however, instead of being a counter argument against pro-
gression, is an artifact of our experimental setup. In the
game setup, if White makes even a single mistake, i.e. not
moving the most advanced runner, the game is lost. When
there are more good runners to choose from, as happens
when the number of active runners go up, so does the likeli-
hood of inadvertently picking a wrong runner to move. This
game property of winning only by committing to any single
out of many possible good strategies, is clearly important in
the context of MCTS. We suspect that in games with this
property MCTS might be more prone to switching strategies
than traditional αβ search, because of the inherent variance
in simulation-based move evaluation. Although we did not
set out to investigate this now apparently important game
property, it clearly deservers further investigation in future
work.

Optimistic Moves
For this experiment we observe how MCTS handles a po-
sition in a special variation of Breakthrough which accen-
tuates this property. Breakthrough is a turn-taking game
played with pawns that can only move one square at a time
either straight or diagonally forward. When moving diago-
nally they are allowed to capture an opponent pawn should
one reside on the square they are moving onto. The player
who is first to move a pawn onto the opponent’s back rank
wins. The variation and the position we set up is shown
in Figure ??. The big X’s are walls that the pawns cannot
move onto. There is a clear cut winning strategy for White

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1 2 3 4 5 6 7 8 9 10

M
C

TS
 W

in
 %

Active Runners

Depth Factor 7

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
C

TS
 W

in
 %

Simulation Ended with Natural Result %

Depth Factor 7

Figure 6: Progression Active Runners: Fixed Node Expansion Count

8

7

6

5

4

3

2

1

a b c d e f g h i j k l

Figure 7: Optimistic Moves Game Results

on the board, namely moving any of the pawns in the mid-
field on the second rank along the wall to their left. The
opponent only has enough moves to intercept with a single
pawn which is not enough to prevent losing. This position
has also built-in pitfalls presented by an optimistic move, for
both White and Black, because of the setups on the a and b
files and k and l files, respectively. For example, if White
moves the b pawn forward he threatens to win against all but
one Black reply. That is, capturing the pawn on a7 and then
win by stepping on the opponent’s back rank. This move
is optimistic because naturally the opponent responds right
away by capturing the pawn and in addition, the opponent
now has a guaranteed win if he keeps moving the capturing
pawn forward from now on. Similar setup exists on the k file
for Black. Still since it is one ply deeper in the tree it should
not influence White before he deals with his own optimistic
move. Yet it is much closer in the game tree than the actual
best moves on the board.

We ran experiments showing what MCTS considered the
best move after various amount of node expansions. We
combined this with four setups with decreased branching
factor. The branching factor was decreased by removing
pawns from the middle section. The pawn setups used were
the ones shown in Figure ??, one with the all pawns removed

from files f and g, one by additionally removing all pawns
from files e and h and finally one where the midfield only
contained the pawns on d2 and i7. The results are in Table
1 and the row named “Six Pawns” refers to the setup in Fig-
ure ??, that is, each player has six pawns in the midfield and
so on. The columns then show the three most frequently
selected moves after 1000 tries and how often they were
selected by MCTS at the end of deliberation. The headers
show the expansion counts given for move deliberation.

The setup showcases that optimistic moves are indeed a
big problem for MCTS. Even at 50,000,000 node expansions
the player faced with the biggest branching factor still erro-
neously believes that he must block the opponent’s piece on
the right wing before it is moved forward (the opponent’s
optimistic move). Taking away two pawns from each player
thus lowering the branching factor makes it possible for the
player to figure out the true best move (moving any of the
front pawns in the midfield forward) in the end, but at the
10,000,000 node expansion mark he is still also clueless.
The setup when each player only has two pawns each and
only one that can make a best move, MCTS makes this re-
alization somewhere between the 1,000,000 and 2,500,000
mark. Finally, in the setup which only has a single pawn per
player in the midfield, MCTS has realized the correct course
of action before the lowest node expansion count measured.

Clearly the bigger branching factors multiply up this
problem. The simulations can be put to much better use if
this problem could be avoided by pruning these optimistic
moves early on. The discovery process of avoiding these
moves can be sped up by more greedy simulations or bi-
asing the playouts towards the (seemingly) winning moves
when they are first discovered. Two general method of do-
ing so are the MAST (Finnsson and Björnsson 2008) and
RAVE (Gelly and Silver 2007) techniques, but much big-
ger improvements could be made if these moves could be
identified when they are first encountered and from then on
completely ignored.

Related Work
Comparison between Monte-Carlo and αβ methods was
done in (Clune 2008). There the author conjectures that αβ
methods do best compared to MCTS when: (1)The heuristic
evaluation function is both stable and accurate, (2)The game

Table 1: Optimistic Moves Results

Nodes 500,000 1,000,000 2,500,000 5,000,000 10,000,000 25,000,000 50,000,000
Six b5-b6 1000 b5-b6 1000 b5-b6 926 b5-b6 734 b5-b6 945 l2-k3 519 k2-k3 507
Pawns l2-k3 44 k2-k3 153 l2-k3 37 k2-k3 481 l2-k3 484

k2-k3 30 l2-k3 113 k2-k3 18 f2-e3 9
Four b5-b6 1000 b5-b6 1000 b5-b6 1000 b5-b6 996 l2-k3 441 e2-d3 535 e2-d3 546
Pawns k2-k3 3 k2-k3 438 e2-e3 407 e2-e3 449

l2-k3 1 b5-b6 121 b5-b6 46 e2-f3 5
Two b5-b6 980 b5-b6 989 d2-d3 562 d2-d3 570 d2-d3 574 d2-d3 526 d2-d3 553
Pawns l2-k3 13 k2-k3 6 d2-e3 437 d2-e3 430 d2-e3 426 d2-e3 474 d2-e3 447

k2-k3 7 l2-k3 5 b5-b6 1
One d2-d3 768 d2-d3 768 d2-d3 781 d2-d3 761 d2-d3 791 d2-d3 750 d2-d3 791
Pawn d2-e3 232 d2-e3 232 d2-e3 219 d2-e3 239 d2-e3 209 d2-e3 250 d2-e3 209

is two-player, (3) The game is turn-taking, (4) The game is
zero-sum and (5) The branching factor is relatively low. Ex-
periments using both real and randomly generated synthetic
games are then administered to show that the further you
deviate from theses settings the better Monte-Carlo does in
relation to αβ.

In (Ramanujan, Sabharwal, and Selman 2010) the authors
identify Shallow Traps, i.e. when MCTS agent fails to re-
alize that taking a certain action leads to a winning strategy
for the opponent. Instead of this action getting a low ranking
score, it looks like being close to or even as good as the best
action available. The paper examines MCTS behavior faced
with such traps 1, 3, 5 and 7 plies away. We believe there is
some overlapping between our Optimistic Moves and these
Shallow Traps.

MCTS performance in imperfect information games is
studied in (?). For their experiment the authors use syn-
thetic game trees where they can tune three properties: (1)
Leaf Correlation - the probability of all siblings of a terminal
node having the same payoff value, (2) Bias - the probabil-
ity of one player winning the other and (3) Disambiguation
factor - how quickly the information sets shrink. They then
show how any combination of these three properties affect
the strength of MCTS.

Conclusions an Future Work
In this paper we tried to gain insight into factors that influ-
ence MCTS performance by investigating how three differ-
ent general game-tree properties influence its strength.

We found that it depends on the game itself whether
MCTS prefers deep trees, big branching factor, or a bal-
ance between the two. Apparently small nuances in game
rules and scoring systems, may alter the preferred game-
tree structure. Consequently it is hard to generalize much
about MCTS performance based on game tree depth and
width. Progression is important to MCTS. However, our re-
sults suggests that MCTS may also be applied successfully
in slow progressing games, as long as a relatively small per-
centage of the simulations provide useful outcomes. In GGP
games one could potentially take advantage of how low ratio
of real outcomes are needed, by curtailing potentially fruit-
less simulations early, thus increasing simulation through-

put. Hints of MCTS having difficulty in committing to a
strategy when faced with many good ones were also discov-
ered. Optimistic Moves are a real problem for MCTS that
escalates with an increased branching factor.

For future work we want to come up with methods for
MCTS that help it in identifying these properties on the fly
and take measures that either exploit or counteract what is
discovered. This could be in the form new extensions, prun-
ing techniques or even parameter tuning of known extension.
Also more research needs to be done regarding the possible
MCTS strategy commitment issues.

Acknowledgments
This research was supported by grants from The Icelandic
Centre for Research (RANNÍS).

References
Clune, J. E. 2008. Heuristic Evaluation Functions for Gen-
eral Game Playing. PhD dissertation, University of Califor-
nia, Los Angeles, Department of Computer Science.
Coulom, R. 2006. Efficient selectivity and backup opera-
tors in Monte-Carlo tree search. In The 5th International
Conference on Computers and Games (CG2006), 72–83.
Enzenberger, M., and Müller, M. 2009. Fuego - an open-
source framework for board games and go engine based on
monte-carlo tree search. Technical Report 09-08, Dept. of
Computing Science, University of Alberta.
Finnsson, H., and Björnsson, Y. 2008. Simulation-based
approach to general game playing. In Fox, D., and Gomes,
C. P., eds., Proceedings of the Twenty-Third AAAI Confer-
ence on Artificial Intelligence, AAAI 2008, Chicago, Illinois,
USA, July 13-17, 2008, 259–264. AAAI Press.
Gelly, S., and Silver, D. 2007. Combining online and of-
fline knowledge in UCT. In Ghahramani, Z., ed., ICML,
volume 227 of ACM International Conference Proceeding
Series, 273–280. ACM.
Gelly, S.; Wang, Y.; Munos, R.; and Teytaud, O. 2006. Mod-
ification of UCT with patterns in Monte-Carlo Go. Technical
Report 6062, INRIA.

Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In European Conference on Machine Learn-
ing (ECML), 282–293.
Lorentz, R. J. 2008. Amazons discover monte-carlo. In Pro-
ceedings of the 6th international conference on Computers
and Games, CG ’08, 13–24. Berlin, Heidelberg: Springer-
Verlag.
Ramanujan, R.; Sabharwal, A.; and Selman, B. 2010. On
adversarial search spaces and sampling-based planning. In
ICAPS’10, 242–245.
Sturtevant, N. R. 2008. An analysis of uct in multi-
player games. In van den Herik, H. J.; Xu, X.; Ma, Z.;
and Winands, M. H. M., eds., Computers and Games, vol-
ume 5131 of Lecture Notes in Computer Science, 37–49.
Springer.
Szita, I.; Chaslot, G.; and Spronck, P. 2009. Monte-carlo
tree search in settlers of catan. In van den Herik, H. J., and
Spronck, P., eds., ACG, volume 6048 of Lecture Notes in
Computer Science, 21–32. Springer.
Winands, M. H. M.; Björnsson, Y.; and Saito, J.-T. 2010.
Monte carlo tree search in lines of action. IEEE Trans. Com-
put. Intellig. and AI in Games 2(4):239–250.

