
Alpha-Beta Pruning for Games with Simultaneous Moves
Abdallah Saffidine

LAMSADE, Université Paris-Dauphine, 75775 Paris Cedex 16, France
Email: abdallah.saffidine@dauphine.fr

Hilmar Finnsson
Reykjavík University, Menntavegi 1, 101 Reykjavík, Iceland

Email: hif@ru.is

Michael Buro
University of Alberta, Edmonton, T6G 2E8, Canada

Email: mburo@ualberta.ca

Abstract

Alpha-Beta pruning is one of the most powerful and funda-
mental MiniMax search improvements. It was designed for
sequential two-player zero-sum perfect information games.
In this paper we introduce an Alpha-Beta-like sound pruning
method for the more general class of “stacked matrix games”
that allow for simultaneous moves by both players. This is
accomplished by maintaining upper and lower bounds for
achievable payoffs in states with simultaneous actions and
dominated action pruning based on the feasibility of certain
linear programs. Empirical data shows considerable savings
in terms of expanded nodes compared to naive depth-first
move computation without pruning.

1 Introduction
When searching game trees, especially in a competitive
setting, significant benefits can be achieved by pruning
branches which under no circumstances can affect the de-
cision being made at the root.

The best known pruning method is the Alpha-Beta algo-
rithm (Knuth and Moore 1975; Russell and Norvig 2010).
It applies to sequential zero-sum two-player games with per-
fect information such as Chess and Checkers. Alpha-Beta
maintains upper and lower value bounds to decide whether
branches can be cut. This type of pruning can lead to
considerable search reductions — essentially doubling the
search depth over the original MiniMax algorithm when
given the same search time.

After its discovery, sound Alpha-Beta style pruning has
been extended to other game types and game tree search
algorithms. E.g., for sequential two-player zero-sum games
with perfect information and chance nodes, *-MiniMax
search safely prunes irrelevant subtrees (Ballard 1983),
and (Sturtevant and Korf 2000; Sturtevant 2005) describe
Alpha-Beta like pruning rules for general-sum games and
games with more than two players. Recently, Monte Carlo
Tree Search (MCTS), which is a type of simulation-based
best-first search algorithm, has been extended to allow for
Alpha-Beta style pruning (Cazenave and Saffidine 2011).

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper we generalize Alpha-Beta pruning to two-
player zero-sum games with simultaneous moves. These
games are a subset of the multi-agent environment (MAE)
as described in (Schiffel and Thielscher 2010) which we
will use as a reference in order to place our contribution
within the world of studied game types.

The paper is structured as follows: First, we give the nec-
essary technical background before introducing Simultane-
ous Move Alpha-Beta (SMAB) pruning — and explaining
it in detail. We then describe how SMAB pruning can be
used in the context of depth-first search and present empir-
ical data to show its effectiveness. We conclude the paper
with ideas for future work in this area.

2 Background
2.1 MiniMax and Alpha-Beta
The MiniMax value of a game tree is calculated based on
the assumption that the two players, called Max and Min,
will choose their next move such that when it is Max’s turn
he will select the action that maximizes his gain while Min
will select the one that minimizes it on his turn. MiniMax
values are propagated from the leaves of the game tree to
its root using this rule. Alpha-beta utilizes the MiniMax
value to prune a subtree when it has proof that a move will
not affect the decision at the root node. This happens when
a partial search of the subtree reveals that the opponent has
the opportunity to lower an already established MiniMax
value backed up from a different subtree.

2.2 Score Bounded MCTS
An MCTS solver which backs up exact MiniMax values of
the sequential zero-sum two-outcome game Lines of Action
was introduced in (Winands, Björnsson, and Saito 2008).
Score bounded MCTS (Cazenave and Saffidine 2011) ex-
pands on this idea and generalized the MCTS solver concept
to any sequential zero-sum game. Score bounded search al-
lows for pruning in the absence of exact MiniMax values
as long as there is some information available to establish
bounds.

Because simulations do not usually methodically explore
the game tree, it is to be expected that we cannot easily



Table 1: Pruning in Multi-Agent Environments

Sequential Zero-sum Agents Pruning
Yes Yes Two αβ
Yes Yes Any (Sturtevant and Korf 2000)
Yes No - (Sturtevant 2005)
No Yes Two This paper

assign MiniMax values to the states when we explore them
as we are only sampling the subtree below. Even though
we may not have explored every reachable state, the sam-
pling information builds up and can be used to get tighter
and tighter bounds on state values. These bounds are called
pessimistic and optimistic, referring to the payoff Max be-
lieves he can get in the worst and best case, respectively.
The default bounds are the minimum and maximum achiev-
able values. Instead of backing up a MiniMax value, the
bounds of a state are deduced from the bounds of subse-
quent states and used in Alpha-Beta fashion by checking
whether lower and upper bounds coincide.

2.3 Multi-Agent Environment (MAE)
The Multi-Agent Environment (MAE) formally describes
discrete and deterministic multi-agent domains (Schiffel
and Thielscher 2010). It can be seen as a transition sys-
tem where each node corresponds to a state and transitions
are associated with joint actions executed by the partici-
pating agents. It is useful to classify MAEs along several
dimensions:
Definition 1. An MAE is single-player if the number of
agents is exactly one, two-player if the number of agents is
exactly two, and multiplayer otherwise.
Definition 2. An MAE is (purely) sequential if in any state,
there is at most one agent with more than one legal action.
Definition 3. An MAE is zero-sum if the sum of utilities of
all agents is constant in all final states.
Table 1 summarizes related work of where pruning has
been achieved in the context of MAE and clarifies where
our contribution lies.

2.4 Nash Equilibrium and Normal-Form Games
A Nash equilibrium is a strategy profile for all players for
which no player can increase his payoff by deviating uni-
laterally from his strategy. In the case of zero-sum two-
player games, all Nash equilibria result in the same payoff,
called the value of the game. When faced with simulta-
neous actions, Nash equilibrium strategies are often mixed
strategies in which actions are performed with certain prob-
abilities (e.g. the only Nash equilibrium strategy for rock-
paper-scissors is playing Rock, Paper, and Scissors with
probability 1/3 each).

Two-player zero-sum games are often presented in
normal-form which in a matrix lists payoffs for player Max
for all action — or more generally pure strategy — pairs.
Throughout this paper, playerMax chooses rows, and player
Min chooses columns. When working with normal-form

games it is sometimes possible to simplify them based on
action domination. This happens when no matter how the
opponent acts, the payoff for some action a is always less or
equal to the payoff for some other action b or a mixed strat-
egy not containing a. In this situation there is no incentive
to play action a and it can be ignored. The possibility of
actions being dominated opens the door for pruning.
Example 1. Consider game G below. The row player will
only select action A2 if the value of subgame H is greater
than 5. Now consider subgame H: no matter what the
values of cells (A3, B3) and (A4, B3) are, the best value
the row player can hope for at this point is 4. As a result,
we do not even need to compute the exact value for H and
it can be pruned.

G =
B1

A1 5
A2 value(H)

H =
B2 B3

A3 4 ?
A4 3 ?

2.5 Applicable Game Domains and
General Solution Techniques

The type of games our pruning technique applies to can be
loosely described as stacked matrix games, but they can also
be seen as a deterministic non-loopy subclass of recursive
games (Everett 1957). This class of games encompasses a
small portion of games appearing in the GGP competition
such as bidding-tictactoe. Furthermore, particular in-
stances of this game class have been studied in (Buro 2003;
Kovarsky and Buro 2005; Furtak and Buro 2010).

As a subset of general zero-sum imperfect information
games, stacked matrix games can be solved by general tech-
niques such as creating a single-matrix game in which indi-
vidual moves represent pure strategies in the original game.
However, because this transformation leads to an exponen-
tial blowup, it can only be applied to tiny problems. In their
landmark paper, (Koller, Megiddo, and von Stengel 1994)
define the sequence form game representation which avoids
redundancies present in above game transformation and re-
duces the game value computation time to polynomial in
the game tree size. In the experimental section we present
data showing that even for small stacked matrix games,
the sequence form approach requires lots of memory and
therefore can’t solve larger problems. The main reason is
that the algorithm doesn’t detect the regular information set
structure present in stacked matrix games, and also com-
putes mixed strategies for all information sets, which may
not be necessary. To overcome these problems (Gilpin and
Sandholm 2007) introduce a loss-less abstraction for games
with certain regularity constraints and show that Nash equi-
libria found in the often much smaller game abstractions
correspond to ones in the original game. General stacked
matrix games don’t fall into the game class considered in
this paper, but the general idea of pre-processing games
to transform them into smaller, equivalent ones may also
apply to stacked matrix games.

3 Simultaneous Move Pruning
In this section we assume that, without loss of generality,
all payoffs are given in view of row-player Max. Moreover,



x =



x1

...
xa−1

xa+1

...
xm


, P =



p1,1 . . . p1,n

...
...

pa−1,1 . . . pa−1,n

pa+1,1 . . . pa+1,n

...
...

pm,1 . . . pm,n


, e =

1
...
1



f = (oa,1 . . . oa,n)

xtP ≥ f, 0 ≤ x ≤ 1,
∑

i xi = 1

Figure 1: System of inequalities for deciding whether row
action a is dominated. a is dominated and can be pruned
if the system of inequalities is feasible.

to allow us to use moves as indexes, we assume that there is
a bijection between legal moves and a subset of consecutive
natural numbers starting with 1.

The criterion we use for pruning is similar to that of
the original Alpha-Beta algorithm: we prune sub-trees if
we have proof that they will under no circumstances im-
prove upon the current guaranteed payoff assuming rational
players.

Let q be a position in the game tree with m actions for
Max and n actions for Min. For all 1 ≤ i ≤ m and 1 ≤
j ≤ n, we call qi,j the position reached after joint action
(i, j) is executed in q. We assume that the information we
have gained so far about position qi,j is in the form of a
pessimistic bound pi,j and an optimistic bound oi,j on the
real value of qi,j . For instance, if the value v of qi,j has
been determined, we have pi,j = v = oi,j . If, however,
no information about qi,j is known, we have pi,j = minval
and oi,j = maxval.

To determine if a row action a can be safely pruned from
the set of available Max actions in the presence of pes-
simistic payoff bounds pi,j and optimistic payoff bounds
oi,j we use linear programming. A sufficient pruning con-
dition is that action a is dominated by a mixed strategy
excluding a. Using the given payoff bounds, we need to
prove that there is a mixed strategy excluding action a that,
when using pessimistic payoff bounds, dominates action a’s
optimistic payoff bounds. If such a mixed strategy exists
then there is no need to consider action a, because a certain
mixture of other actions is at least as good.

The system of inequalities (SI) in Figure 1 shows these
calculations. If this system is feasible then action a can
be pruned. Note that if n = 1, i.e. this state features
a non-simultaneous action with Max to play, the SI re-
duces to the one shown in Figure 2. This SI is feasi-
ble if and only if there exists an action a′ 6= a such that
pa′ ≥ oa. This is can be reformulated as pruning action
a if max pi ≥ oa which matches the pruning criterion in
score bounded MCTS (Cazenave and Saffidine 2011) ex-
actly. The analogous SI for pruning dominated column
actions is shown in Figure 3.

x =



x1

...
xa−1

xa+1

...
xm


, p =



p1

...
pa−1

pa+1

...
pm


, e =

1
...
1



xtp ≥ oa, 0 ≤ x ≤ 1,
∑

i xi = 1

Figure 2: System of inequalities to decide if a row action
a can be pruned when there is only one column action.

x = (x1 . . . xb−1 xb+1 . . . xm)

O =

 o1,1 . . . o1,b−1 o1,b+1 . . . o1,n

...
...

...
...

om,1 . . . om,b−1 om,b+1 . . . om,n



f =

 p1,b

...
pm,b


e = (1 . . . 1)

Oxt ≤ f, 0 ≤ x ≤ 1,
∑

i xi = 1

Figure 3: System of inequalities to decide if a column
action b is dominated. b is dominated and can be pruned if
the system of inequalities is feasible.

4 Simultaneous Move Alpha-Beta Search
Like the original Alpha-Beta algorithm, we traverse a given
game tree in depth-first manner, for each position q using
a lower bound α and an upper bound β on the value of q.
As soon as we can prove that the value of q lies outside
(α, β), we can prune the remaining positions below q and
backtrack.

In this section we again assume that payoffs are given in
view of row-player Max and that for each game state and
player we have a bijection between legal moves and move
indices starting at 1.

We begin by explaining how to determine the α and β
bounds from pessimistic and optimistic value bounds. We
then show how this computation can be integrated into a
recursive depth-first search algorithm. Finally, we discuss
some practical aspects.

4.1 Propagating Bounds
Let q be a position in the game tree and A = {1..m} and
B = {1..n} the move sets for players Max and Min. For
all (i, j) ∈ A × B, we call qi,j the position reached after
joint action (i, j) is executed in q. We assume that the
information we have gained so far about position qi,j is
in the form of a pessimistic bound pi,j and an optimistic
bound oi,j on the real value of qi,j . The default bound
values are minval and maxval, respectively. Let qa,b be the
next position to examine. We are interested in computing



x =



x1

...
xa−1

xa+1

...
xm

xm+1


, P =



p1,1 . . . p1,b−1 p1,b+1 . . . p1,n

...
...

...
...

pa−1,1 . . . pa−1,b−1 pa−1,b+1 . . . pa−1,n

pa+1,1 . . . pa+1,b−1 pa+1,b+1 . . . pa+1,n

...
...

...
...

pm,1 . . . pm,b−1 pm,b+1 . . . pm,n

α . . . α α . . . α


, e =



p1,b

...
pa−1,b

pa+1,b

...
pm,b

α


f = (oa,1 . . . oa,b−1 oa,b+1 . . . oa,n)

αa,b = maxxte, subject to xtP ≥ f, 0 ≤ x ≤ 1,
∑

i xi = 1, or minval−1 if the LP is infeasible

Figure 4: Computing the pessimistic value αa,b

x = (x1 . . . xb−1 xb+1 . . . xn xn+1)

O =



o1,1 . . . o1,b−1 o1,b+1 . . . o1,n β
...

...
...

... β
oa−1,1 . . . oa−1,b−1 oa−1,b+1 . . . oa−1,n β
oa+1,1 . . . oa+1,b−1 oa+1,b+1 . . . oa+1,n β

...
...

...
... β

om,1 . . . om,b−1 om,b+1 . . . om,n β


, f =



p1,b

...
pa−1,b

pa+1,b

...
pm,b


e = (oa,1 . . . oa,b−1 oa,b+1 . . . oa,n β)

βa,b = min ext, subject to Oxt ≤ f, 0 ≤ xt ≤ 1,
∑

i xi = 1, or maxval+1 if the LP is infeasible

Figure 5: Computing the optimistic value βa,b

αqa,b
and βqa,b

in terms of α, β (the value bounds for q),
pi,j and oi,j for (i, j) ∈ A × B. We first concentrate on
computing αqa,b

, or αa,b for short. βa,b can be derived
analogously.

There are two reasons why we might not need to know
the exact value of qa,b, if it is rather small. Either we
have proved that it is so small that a is dominated by a
mixed strategy not containing a (shallow pruning), or it is
so small that as a result we can prove that the value of q
is smaller than α (deep pruning). We can combine both
arguments into one LP by adding an artificial action m+1
for Max that corresponds to Max deviating earlier. This
action guarantees a score of at least α, i.e. pm+1,j = α for
all j ∈ B. We can now restrict ourselves to determining
under which condition action a would be dominated by
a mixed strategy of actions M := {1, . . . ,m + 1}\{a}.
To guarantee soundness, we need to look at the situation
where a is least expected to be pruned, i.e. when the values
of positions qa,j reach their optimistic bounds oa,j and for
every other action i 6= a, the values of positions qi,j reach
their pessimistic bounds pi,j .
Consider the set of mixed strategies D dominating a on

every column but b, i.e.

D = {x ∈ IRm
≥0 |

∑
i

xi = 1,∀j 6= b :
∑
i∈M

xipi,j ≥ oa,j}

Action a is dominated if and only if a is dominated on
column b by a strategy in D. I.e., action a is dominated if

and only if value v of qa,b satisfies:

∃x ∈ D :
∑
i∈M

xipi,b ≥ v

If D is non-empty, to have the tightest αa,b possible, we
maximize over such values:

αa,b = max
x∈D

∑
i∈M

xipi,b

Otherwise, if D is empty, qa,b can’t be bound from below
and we set αa,b = minval.
This process can be directly translated into the LP pre-

sented in Figure 4. Similarly, the bound βqa,b
is defined as

the objective value of the LP shown in Figure 5.

4.2 Main Algorithm
Algorithm 1 describes how our simultaneous move pruning
can be incorporated in a depth-first search algorithm by
looping through all joint action pairs first checking trivial
exit conditions and if these fail, proceeding with computing
optimistic and pessimistic bounds for the entry in questions,
and then recursively computing the entry value. We call this
procedure Simultaneous Move Alpha-Beta (SMAB) Search.
Theorem: When SMAB is called with q, α, β and α < β
...
1. ... it runs in weakly polynomial time in the size of the

game tree rooted in q.



SMAB(state q, lower bound α, upper bound β)1
if q is a terminal state then2

return payoff for q3
else4

let A = the set of legal moves for the row player;5
let B = the set of legal moves for the col player;6
let pi,j = minval for i ∈ A, j ∈ B;7
let oi,j = maxval for i ∈ A, j ∈ B;8
let P denote the matrix formed by all pi,j ;9
let O denote the matrix formed by all oi,j ;10
for each (a, b) ∈ A×B do11

if row a and column b not dominated then12
let αa,b as defined in Fig. 4 restricted to13
non-dominated actions;
let βa,b as defined in Fig. 5 restricted to14
non-dominated actions;
let qa,b = the state reached after applying15
(a, b) to q;
if αa,b ≥ βa,b then16

let va,b = SMAB(qa,b, αa,b, αa,b + ε);17
if va,b ≤ αa,b then a is dominated;18
else b is dominated;19

else20
let va,b = SMAB(qa,b, αa,b, βa,b);21
if va,b ≤ αa,b then a is dominated;22
else if va,b ≥ βa,b then b is23
dominated;
else let pa,b = oa,b = va,b;24

end25

end26

end27
return Nash(P restricted to non-dominated28
actions)

end29

Algorithm 1: Pseudo-code for simultaneous move Alpha-
Beta search. Function Nash(X) computes the Nash equi-
librium value of normal-form game payoff matrix X for
row player Max.

2. ... and returns v ≤ α, then value(q) ≤ v.
3. ... and returns v ≥ β, then value(q) ≥ v.
4. ... and returns α < v < β, then value(q) = v.

Proof Sketch:

1.: Weakly polynomial run-time in the sub-tree size can
be shown by induction on the tree height using the fact
that LPs can be solved by interior point methods in weakly
polynomial time.
2.,3.,4.: Induction on tree height h. For h = 0, SMAB
immediately returns the true value. Thus, properties 2.-4.
hold. Now we assume they hold for all heights h ≤ k and
q has height k + 1 and proceed with an induction on the
number of inner loop iterations claiming that P and O are
correctly updated in each step (using the derivations in the
previous subsection and the main induction hypothesis) and
if line 28 is reached, properties 2.-4. hold. �

4.3 Ordering Move Pairs
Heuristics can be used to initialize (pi,j , oi,j), given that
they have the admissibility property with regards to the
bound they are applied to. As an example, we might in
some game know from the material strength on the board in
some state that we are guaranteed at least a draw, allowing
us to initialize the pessimistic value to a draw. Similarly,
we should be able to set the optimistic value to a draw if
the opponent is equally up in material.

Additionally, the order in which the pairs (a, b) will be
visited in line 11 in Algorithm 1 can dramatically affect the
amount of pruning. This problem can be decomposed into
two parts. Move ordering in which the individual moves
are ordered and cell ordering in which the joint moves
are ordered based on the order of the individual moves.
Formally, move ordering means endowing the sets A and
B with total orders <A and <B and cell ordering is the
construction of a total order for A × B based on <A and
<B . For instance, the lexicographical ordering is a possible
cell ordering: (a1, b1) will be explored before (a2, b2) iff
a1 <A a2 or a1 = a2 and b1 < b2. We will discuss
heuristic cell orderings in the next section.

5 Experimental Results
As a test case we implemented SMAB pruning for the game
of Goofspiel. The following experimental results were
obtained running OCaml 3.11.2, g++ 4.5.2, and the glpk
4.43 LP-solver under Ubuntu on a laptop with Intel T3400
CPU at 2.2 GHz.

5.1 Goofspiel
The game Goofspiel (Ross 1971; Shaei, Sturtevant, and
Schaeffer 2009) uses cards in three suits. In the version
we use, each player has all the cards of a single suit and
the remaining suit is stacked on the table face up in a pre-
defined order. On each turn both players simultaneously
play a card from their hand and the higher card wins its
player the top card from the table. If the played cards are of
equal value the table card is discarded. When all cards have
been played the winner is the player whose accumulated
table cards sum up to a higher value. We used games with
various number of cards per suit to monitor how the pruning
efficiency develops with increasing game-tree sizes.

We use a cell ordering that strives to keep a balance be-
tween the number of rows filled and the number of columns
filled. We call it L-shaped and it can be seen as the lex-
icographical ordering over tuples (min{a, b}, a, b). Its ap-
plication to 5× 5 matrix is described in Figure 6. In all of
our preliminary experiments, the L-shaped ordering proved
to lead to earlier and more pruning than the natural lexico-
graphical orderings.

To save some calculations, it is possible to skip the LP
computations for some cells and directly set the correspond-
ing α and β bounds to (minval - 1) and (maxval + 1),
respectively. On the one hand, if the computed bounds
wouldn’t have enabled much pruning, then using the de-
fault bounds instead allows to save some time. On the



1 2 3 4 5
6 10 11 12 13
7 14 17 18 19
8 15 20 22 23
9 16 21 24 25

Figure 6: L-shaped cell ordering for 5× 5 matrices.

Table 2: Solving Goofspiel with backward induction.

size nodes (= LP calls) total time LP time
4 109 0.008 0.004
5 1926 0.188 0.136
6 58173 5.588 4.200
7 2578710 247.159 184.616

other hand, if too many bounds are loose, there will be
superfluous computations in prunable subtrees.

To express this tradeoff, we introduce the early bound
skipping heuristic. This heuristic is parameterized by an
integer s and consists in skipping the LP-based computa-
tions of the α and β bounds as long as the matrix does not
have at least s rows and s columns completely filled. For
instance, if we use this heuristic together with the L-shaped
ordering on a 5 × 5 matrix with parameter s = 1, no LP
computation takes place for the bounds of the first 9 cells.

In our backward induction implementation that recur-
sively solves subgames in depth-first-fashion, we used one
LP call per non-terminal node expansion. Table 2 shows
the number of non-terminal node expansions/LP calls, the
total time spent running the algorithm, and the time spent
specifically solving LPs.

Table 4 shows the same information for SMAB using
L-shaped ordering and early bound skipping parameterized
by s. This table has separate columns for the number of
non-terminal node expansions and the number of calls to
the LP solver as they are not equal in the case of SMAB.

Table 3 shows the memory and time needed to solve
Goofspiel using a sequence form solver based on based
on (Koller, Megiddo, and von Stengel 1994). The algo-
rithm needs a huge amount of memory to solve even a
moderate size instance of Goofspiel. The backward in-
duction and the SMAB implementations, on the contrary,
never needed more than 60 MB of memory. This differ-
ence is expected as the backward induction and SMAB are
depth-first search algorithms solving hundreds of thousands
of relatively small LPs while the sequence form algorithm
solves a single large LP.

6 Conclusion and Future Work
We have shown that it is possible to extend Alpha-Beta
pruning to include simultaneous move games and that our
SMAB pruning procedure can reduce the node count and
run-time when solving non-trivial games. In the reported
experiments we used a fixed move ordering and a fixed cell

Table 3: Solving Goofspiel with a sequence form solver.

size memory time
4 8 MB <1 s
5 43 MB 152 s
6 > 2 GB > 177 s

Table 4: Solving Goofspiel with SMAB.

size nodes LP calls total time LP time s

4 55 265 0.020 0.016 0
4 59 171 0.012 0.012 1
4 70 147 0.012 0.012 2
5 516 2794 0.216 0.148 0
5 630 1897 0.168 0.128 1
5 1003 1919 0.184 0.152 2
6 13560 74700 5.900 4.568 0
6 18212 55462 4.980 3.852 1
6 30575 57335 5.536 4.192 2
7 757699 4074729 324.352 245.295 0
7 949521 2857133 259.716 197.700 1
7 1380564 2498366 241.735 182.463 2
7 1734798 2452624 237.903 177.411 3
7 1881065 2583307 253.476 188.276 4

ordering. The results show a considerable drop in node
expansions, even though not nearly as much as with Alpha-
Beta in the sequential setting, but certainly enough to be
very promising. Still, this threshold is not high and with
increasing game size the run-time appears to be increasingly
improving. The pruning criterion we propose is sound, but
it only allows us to prune provably dominated actions. As
a result, some actions which are not part of any equilibrium
strategy may not get pruned by our method. Consider the
following example:
Example 2. The following game has a unique Nash equi-
librium at (A2, B2), but no action is dominated.

B1 B2 B3

A1 6 1 0
A2 3 3 3
A3 0 1 6

SMAB yields considerable savings in practice, but this ex-
ample shows that there is room for even more pruning.

It will be interesting to see how SMAB pruning performs
in other domains and it can also be applied to MCTS which
has become the state-of-the-art algorithmic framework for
computer go and the general game playing competition.
A natural candidate is to extend the score bounded MCTS
framework that we described earlier.

In our implementation we just used a naive move or-
dering scheme. However, simultaneous moves offer some
interesting opportunities for improvements. As each indi-
vidual action is considered more than once in a state, we



get some information on them before their pairings are fully
enumerated. The question is whether we can use this infor-
mation to order the actions such that the efficiency of the
pruning increases, like it does for sequential Alpha-Beta
search.

Finally, it may be possible to establish the minimal num-
ber of node expansions when solving certain classes of
stacked matrix games with depth-first search algorithms in
general, or SMAB in particular.

Acknowledgments
We want to thank Martin Müller, Yannick Viossat, and
Tim Furtak for frutifull discussions regarding SMAB, Marc
Lanctot for letting us use his sequence form solver, and
the anonymous reviewers for their constructive feedback.
Financial support was provided by NSERC.

References
Ballard, B. W. 1983. The *-minimax search procedure
for trees containing chance nodes. Artificial Intelligence
21(3):327–350.
Buro, M. 2003. Solving the Oshi-Zumo game. In van den
Herik, H. J.; Iida, H.; and Heinz, E. A., eds., Advances
in Computer Games, Many Games, Many Challenges, 10th
International Conference, volume 263 of IFIP, 361–366.
Graz, Austria: Kluwer.
Cazenave, T., and Saffidine, A. 2011. Score bounded
Monte-Carlo tree search. In van den Herik, H.; Iida, H.;
and Plaat, A., eds., Computers and Games, volume 6515
of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg. 93–104.
Everett, H. 1957. Recursive games. Contributions to the
Theory of Games III 39:47–78.
Furtak, T., and Buro, M. 2010. On the complexity of two-
player attrition games played on graphs. In Youngblood,
G. M., and Bulitko, V., eds., Proceedings of the Sixth AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, AIIDE 2010.
Gilpin, A., and Sandholm, T. 2007. Lossless abstraction of
imperfect information games. Journal of the ACM 54(5).
Knuth, D. E., and Moore, R. W. 1975. An analysis of
alpha-beta pruning. Artificial Intelligence 6(4):293–326.
Koller, D.; Megiddo, N.; and von Stengel, B. 1994. Fast
algorithms for finding randomized strategies in game trees.
In Proceedings of the 26th ACM Symposium on Theory of
Computing, 750–759.
Kovarsky, A., and Buro, M. 2005. Heuristic search applied
to abstract combat games. In Canadian Conference on AI,
66–78.
Ross, S. M. 1971. Goofspiel: The game of pure strategy.
Journal of Applied Probability 8(3):621–625.
Russell, S. J., and Norvig, P. 2010. Artificial Intelligence
— A Modern Approach (3rd international edition). Pearson
Education.
Schiffel, S., and Thielscher, M. 2010. A multiagent se-
mantics for the game description language. In Filipe, J.;

Fred, A.; and Sharp, B., eds., Agents and Artificial Intel-
ligence, volume 67 of Communications in Computer and
Information Science. Springer Berlin Heidelberg. 44–55.
Shaei, M.; Sturtevant, N.; and Schaeffer, J. 2009. Compar-
ing UCT versus CFR in simultaneous games. In Proceed-
ings of the IJCAI-09 Workshop on General Game Playing
(GIGA’09), 75–82.
Sturtevant, N. R., and Korf, R. E. 2000. On pruning tech-
niques for multi-player games. In Proceedings of the Sev-
enteenth National Conference on Artificial Intelligence and
Twelfth Conference on Innovative Applications of Artificial
Intelligence, AAAI/IAAI 2000, 201–207.
Sturtevant, N. R. 2005. Leaf-value tables for pruning non-
zero-sum games. In IJCAI-05, Proceedings of the Nine-
teenth International Joint Conference on Artificial Intelli-
gence, 317–323. Edinburgh, Scotland, UK: Professional
Book Center.
Winands, M. H.; Björnsson, Y.; and Saito, J.-T. 2008.
Monte-Carlo tree search solver. In Proceedings of the 6th
international conference on Computers and Games, CG
’08, 25–36. Berlin, Heidelberg: Springer-Verlag.


