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Abstract

We start by making a distinction between mind and cognition, and by positing that cognition is an aspect
of mind.  We propose as a working hypothesis a Separability Hypothesis which posits that we can factor
off an architecture for cognition from a more general architecture for mind, thus avoiding a number of
philosophical objections that have been raised about the "Strong AI" hypothesis. We then discuss
different positions that have been taken about how biological a theory of intelligence or cognition needs
to be.  Using a coin-sorting machine as an example, we discuss a range of positions on representations,
and argue that for many purposes, the same body of matter can be interpreted as bearing different
representational formalisms.  We adopt the view that one way to understand the diversity of architectural
theories is to make a distinction between deliberative and subdeliberative architectures.  We propose that
symbolic architectures, especially those based on logic or problem spaces, are essentially modeled on
intuitions about deliberation, while connectionist and other architectures are inspired by phenomena that
occur below deliberation. Much of the discussion and arguments in the field are not so much about "facts
of the matter" as they are about analytic stances.  Thus the search for an architectural level which will
explain all the interesting phenomena of cognition is likely to be futile.  There are a number of levels
which interact, unlike in the computer model, and this interaction makes explanation of even relatively
simple cognitive phenomena in terms of one level quite incomplete.

Dimensions for Thinking About Thinking

A major problem in the study of intelligence and cognition is the range of -- often implicit -- assumptions
about what phenomena these terms are meant to cover.  Are we just talking about cognition as having and
using knowledge, or are we also talking about other mental states such as emotions and subjective
awareness?  Are we talking about intelligence as an abstract set of capacities, or as a set of biological
mechanisms and phenomena?  These two questions set up two dimensions of discussion about
intelligence.  After we discuss these dimensions we will discuss information processing, representation,
and cognitive architectures.

Dimension 1. Is intelligence separable from other mental phenomena?

When people think of intelligence and cognition, they often think of an agent being in some knowledge
state, that is, having thoughts, beliefs.  They also think of the underlying process of cognition as
something that changes knowledge states.  Since knowledge states are particular types of information
states the underlying process is thought of as information processing.  (We will discuss this in more detail
later in the paper.)  However, besides these knowledge states, mental phenomena also include such things
as emotional states and subjective consciousness.  Under what conditions can these other mental
properties also be attributed to artifacts to which we attribute knowledge states?  Is intelligence separable
from these other mental phenomena?
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It is possible that intelligence can be explained or simulated without necessarily explaining or simulating
other aspects of mind.  A somewhat formal way of putting this Separability Hypothesis is that the
knowledge state transformation account can be factored off as a homomorphism of the mental process
account.  That is: If the mental process can be seen as a sequence of transformations: M1 -->M2 -->...,
where Mi is the complete mental state, and the transformation function (the function that is responsible
for state changes) is F, then a subprocess   K1 --> K2 -->. . . can be identified such that each Ki is a
knowledge state and a component of the corresponding Mi, the transformation function is f,  and f is some
kind of homomorphism of F.  A study of intelligence alone can restrict itself to a characterization of K's
and f, without producing accounts of M's and F.  If cognition is in fact separable in this sense, we can in
principle design machines that implement f and whose states are interpretable as K's.  We can call such
machines cognitive agents, and attribute intelligence to them.  However, the states of such machines are
not necessarily interpretable as complete M's, and thus they may be denied other attributes of mental
states.

For example, Searle [1980] holds that a computer program that successfully translates from Chinese to
English cannot be said to "understand Chinese," even though it is behaviorally intelligent in this task.  In
our terminology, we would say that the program goes through various appropriate knowledge states as it
translates between the languages.  Searle's objection can be formulated as the claim that "understanding"
is a subjective property that goes beyond merely being in the corresponding knowledge state, and thus the
program can be denied that property.

Other researchers claim that intelligence cannot be separated from other mental phenomena (such as
subjectivity, emotion, etc.).  Such a claim is often made from two opposite perspectives.  From one
perspective other aspects of mind are inseparable because they are simply "emergent" properties of
certain kinds of complex agents with knowledge states, and thus when we have explained or simulated
knowledge states, we have also explained or simulated other mental phenomena.  That is, once a complex
enough agent with knowledge states is built, subjectivity and emotional states will just arise without
anything extra being added.  If this is the case, the knowledge state account, and with it an account in
terms of information processing, will be by itself a sufficient basis for explaining and building minds.
Explanation of the phenomena of intelligence and cognition will also turn out to be explanation of the
full range of mental phenomena.  By the same token, it is assumed that artificial agents that can be
plausibly interpreted as solving problems, achieving goals, and performing reasoning will also have
emotional states and subjective consciousness attributable to them.

The second perspective from which intelligence is taken to be inseparable from other mental phenomena
holds that there is no coherent way to factor off a knowledge state process account from a mental state
process account.  That is, aspects of mind like subjectivity and emotion are not emergent from knowledge
states.  Further, the knowledge state process cannot be fully explained or simulated without also
explaining or simulating the whole mind, including these other aspects as well.  From this point of view,
the categorical difference between different attributes of mental states is affirmed, but the Separability
Hypothesis is denied.  We can talk about knowledge components of mental states, but mental processes
have no "subprocesses" which only have to do with information processing.  In this view, the only way to
explain or build an intelligence is to solve the problem of explaining or building a mind.  Thus only
agents which have the totality of what we call "mind" will be able to perform as truly successful problem
solvers across the whole range of situations deemed to require intelligence.

Edelman [1987, 1989] has argued that information processing is not the appropriate way to talk about
cognition.  Instead he proposes that the basic mechanisms of the brain are the selection of successful
neuronal groups in response to interactions with the world.  The processes that underlie this neuronal
group selection resemble Darwinian evolutionary processes.  Cognitive phenomena, in his view, cannot
be separated and understood in information processing terms, since cognitive states are simply aspects of
more general brain states, and the basic brain mechanisms are not information processes.
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Dimension 2:  Functional versus Biological

The second dimension in discussions about intelligence involves the extent to which we need to be tied to
biology for understanding intelligence.  Can intelligence be characterized abstractly as a functional
capability which just happens to be realized more or less well by some biological organisms?  If it can,
then study of biological brains, of human psychology, or of the phenomenology of human consciousness
is not logically necessary for a theory of cognition and intelligence, just as enquiries into the relevant
capabilities of biological organisms are not needed for the abstract study of logic and arithmetic or for the
theory of flight.  Of course, we may learn something from biology about how to practically implement
intelligent systems, but we may feel quite free to substitute non-biological (both in the sense of
architectures which are not brain-like and in the sense of not constrained by considerations of human
psychology) approaches for all or part of our implementation.  Whether intelligence can be characterized
abstractly as a functional capability surely depends upon what phenomena we want to include in defining
the functional capability, as we discussed. We might have different constraints on a definition that
needed to include emotion and subjective states than one that only included knowledge states.  Clearly,
the enterprise of AI deeply depends upon this functional view being true at some level, but whether that
level is abstract logical representations as in some branches of AI, Darwinian neural group selections as
proposed by Edelman, something intermediate, or something physicalist is still an open question.

Newell, like most people in AI, holds a functional view of intelligence.  According to Newell [1990],
intelligent agents can be abstractly characterized by their goals, their knowledge and the Principle of
Rationality.  That is, when we attribute intelligence to an agent in some behavior, we are attributing to
that agent a goal, a body of knowledge, and a capability, at least in that instance of behavior, of applying
knowledge relevant to the goal to decide what to do.  It is important to note that all of this is attribution.
Newell calls a description of an agent in these terms a Knowledge Level description.  Knowledge Level
descriptions view the agent as being in a knowledge state, and the Principle of Rationality as the abstract
characterization of how the agent changes knowledge states.  (Attributing knowledge and goals to an
agent is similar to taking an intentional stance towards agents that Dennett [1987] has proposed.)

There is no claim that knowledge is internally represented explicitly, and in just the same propositional
units as in the attribution, or that explicitly inferential processes are operating.  Newell defines the
functionality of intelligence as the ability of an agent to realize the knowledge potential inherent in its
Knowledge Level description.  For Newell the important character of intelligence is the agent's ability to
make full use of the knowledge attributed to it, not the amount or the specifics of the agent's knowledge.
Even humans are only an approximation to the ideal intelligence so defined.  In this perspective,
biological evolution will be seen as operating in the direction of better and better approximation to this
sort of intelligence through the evolution of more complex knowledge state representations (of the sort
that finds its culmination in human language) which are capable of supporting open-ended deliberation
and the application of knowledge to new goals.

So, with Newell, we have a functional characterization of intelligence which is independent of biology.
But Newell goes on to propose an architecture which is inspired by one biological instantiation, the
human cognitive apparatus.  The architecture Newell proposes is similar to the human one in that it has a
long term memory and a deliberative architecture similar to the one that in his view characterizes human
cognition.  But, because it is a functionally defined architecture, it goes beyond the biological in many
ways.  For example, the ideal architecture always retrieves the relevant knowledge, unlike the human
version which often fails to remember.  Further, the functional architecture is based on digital computer-
like symbol structures.  For Newell, it doesn't matter if the human brain is literally such a computer.  All
that matters is that the kind of computer-like symbol structures can support the functionality needed.
Further, the architecture that is proposed by Newell as a possible one for AI is just one among many
possible realizations of the abstract functional capability specified in his definition of intelligence.

3



02/28/93

In general, different functional characterizations end up using aspects from very different levels of
descriptions of biological mind.  For example, the connectionists want to be biological enough to include
some of the smooth concept learning done by humans, and base their architectural proposals on some of
the abstract properties they take to be involved in the information processing of brains, but their
orientation is not so biological as to demand wet neurons and neuronal chemistry.  Searle wants to be
biological enough to demand the inclusion of the subjective awareness of being in a knowledge state
(which is how we interpret his claim that a translator who follows the algorithm doesn't really
"understand Chinese") that humans have, but he takes the chemistry of the brain to be responsible for that
subjective awareness, and thus a pure information processing account will not succeed.  Edelman wants
to be biological enough to include the way in which organisms' brains, in his view, do not use pre-made
internal labels (which he takes to be the characteristic property of information processing).  Since his
theory of neuronal group selection itself is stated as an abstract mechanism, presumably artifacts could be
constructed which implement that abstract architecture without any further reference to biology.
Connectionists (Rumelhart, et al. [1986] reintroduced connectionism into AI and cognitive science) and
Edelman want to be biological enough to understand the common heritage between animals and humans,
while traditional AI researchers stop their biological commitment to characterizing intelligence as using
knowledge to reason and achieve goals (since they take humans to be doing that).  Thus, all such
proposals pick out some interesting aspect from biological phenomena, and then proceed to formulate a
functional model that includes the selected aspect.  After this, real biology is taken to be no longer
logically necessary.  Whether any of these proposals would lead to the production (or explanation) of
mentality in total, or almost circularly, produce only those aspects of mentality that are included in the
functional definition, is obviously an open question.

Coin-Sorters and Knowledge States

In this paper we will take the Separability Hypothesis as a working hypothesis.  At this point,  for all
practical purposes AI (and cognitive science) can be considered the study of those regularities of mind
that have information-processing explanations.  We will assume that it is a worthwhile enterprise to
concentrate on phenomena in which knowledge states of the agent seem to play the central role.  Further,
we will focus on processes that account only for generation and transformation of such knowledge states.
Now this might appear to be a commitment to information processing so strong that many interesting
theories will be ruled out.  However, we will argue that the knowledge state account is very flexible, and
can even be applied to situations where there is no explicit information processing in the conventional
sense.  To illustrate this we will use the example of a coin-sorter for coins of USA.

Analysis of a coin-sorter

Let us suppose that we have a black box coin sorter in front of us, and we want to describe its behavior
computationally.  All we see is that the coins are put into the top of the coin sorter, and then they come
out through one of four slots at the bottom, with all the dimes coming out the slot designated the dime
slot, and the quarters coming out the slot designated the quarter slot, and so on.  Let us assume we have
four types of AI theorists: a logician, some one who is committed to algorithms alone as the language in
which to formulate AI theories, a connectionist and a physicalist, i.e., one who claims that the appropriate
explanation of the coin-sorter should be in terms of its physics, not representations.

Logic system coin sorter

The logician proposes that the machine's behavior can be understood in terms of four logical axioms, one
for each coin.  A set of measurements made on each of the coins.  Perhaps diameter, weight, and
thickness are the coin's important features for this purpose.  Each coin type is characterized by a logical
formula of predicates involving the measurements.   For example, the axioms for each of the four types
of coins will indicate which combination of weight, thickness and diameter characterize that coin type.
The logician claims that the behavior of the machine then can be characterized by a theorem-proving
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decision procedure that attempts to prove each of the theorems for each coin that is inserted, followed by
a mechanism that places the coin into that slot corresponding to the theorem that was proved.

Note that this language enables us to argue about different theories about what is being measured by the
sorter.  Someone could watch the behavior of the coin sorter and assert that the machine is not using
information about the weight and diameter of the coins, but rather about, say, its color and metallic
content.  They could propose an alternative axiom system in terms of color and metallic content.  Each
such axiom system is a different content theory expressed in the logic formalism.

Further, the formalism can be used to evaluate these alternate theories and test them experimentally.  We
can use logical inference to draw out the consequences of each proposal.  One hypothesized content
theory might predict that a given foreign coin, say an Indian rupee, will come out the quarter slot, while
another might predict that the rupee will come out the penny slot.  We can then test to see which
hypothesized content theory most accurately describes the decision making process within the black box
by putting the rupee in and seeing which slot it is placed at.

Notice that the usefulness of the logic formalism has two levels.  On one level, we can use the formalism
to describe different content theories, e.g., the theory that the coins are being sorted by color versus one
that they are being sorted by weight.  We can use the inference machinery that comes with logic to derive
consequences of different axioms and test one theory of representational content against another.  For this
purpose, there is no need to commit oneself to how the insides of the sorter work in any detail, except
that information of certain types is being used to make decisions of certain types. We are simply using
logic to reason about the agent, much as it is used in computer science to reason about the correctness of
a computer program written in some other language than logic.  We are using logic to give a Knowledge
Level description of the sorter.

The second use of logic may be to model, or carry out, internal processing.  For example, the coin-sorter
might actually have dedicated Prolog chips inside actually implementing the theorem provers.  The coin-
sorter might literally work by actuating an arm that places the coins in the slots as soon as the results of
the theorem provers are available.

Decision tree coin sorter

The second theorist observes the coin-sorter and announces that its behavior can be described by a
decision tree.  In a decision tree machine, there is an initial decision made between two groups, e.g.,
between the group consisting of the nickel and the quarter, and the group consisting of the dime and the
penny.  For each of the groups, at the next point in the tree, an additional decision is made to make a
choice among subgroups, and this is repeated until each leaf node corresponds to one of the elements of
the original group.  We now have a decision tree.  In the coin-sorter example, we would only need two
levels in the tree.  The criteria for the decisions at each node are given in the form of rules involving
values of measurements made on the coin.

Again, we can use the formalism as a descriptive device, or as a commitment to a certain internal
processing.  For example, as a descriptive device, the decision tree still enables us to propose different
content theories, not only about what aspects of the coins are measured as in the logic case, but also
about what sets of decisions are made before what decisions.  In this sense, what was left as a feature of
internal processing in the use of logic for external description, namely some aspect of control strategy, is
actually now made part of the external description of the device.  The axiom system made no
commitment to control.  This expresses the difference between a Knowledge Level account and a
algorithm level account.
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On the other hand, similar to the logic case, one can imagine microprocessors actually implementing the
decision tree algorithm, using the measurements to make the choices in the tree, and activating the coin-
placing mechanism appropriately when a leaf node is reached.

Connectionist network coin sorter

The connectionist claims that what is really going on in the coin sorter involves the same features,
diameter, color, or whatever, as the other theories assumed, but these evidences are "weighted" and
combined as in a connectionist network.  Different theories of representational content could still be
represented by identifying the nodes with different types of measurement.  How the information is used
can be described by means of different weights and thresholds in the network.  Intermediate abstractions
may be captured by hidden units.  The intermediate abstractions are combined with other intermediate
abstractions and again weighted and higher level decision units are constructed.  A specific output node is
identified for each coin.  The "energy" at the output nodes will be a function of how much evidence is
coming through for the coin for which it stands.  The output node corresponding to the largest activation
will be chosen as the decision node.

Pretty much all the points we made about logic and decision trees can be repeated for this account as
well.  The connectionist framework can be used to describe content theories about what information is
used, and to give an account of what evidence is combined in what proportion with what other evidence.
Inferences about different content theories can be made and tested.  At this level, no commitment needs
to be made that the inside of the sorter is literally a connectionist machine.  On the other hand, the
connectionist network can be used as the internal information processor as well.

Voila: Levers and Holes!

Let us now open the coin-sorter and look at its inside.  We see that as you put a coin in, it passes through
levers and holes, all cleverly arranged such that the coin makes its way to the right slots.  Clearly, the
different weights and the sizes of the coin have different effects on the levers and the holes.  There are no
prologue chips or microprocessors or connectionist networks inside the black box, just mechanical parts.
The physicalist, the one who does not believe in representations, smiles.

Does the Sorter Have a Knowledge State Interpretation?

In response to the question, "How did the quarter end up in the slot named 'quarter'?", two kinds of
answers, both correct, can be given.  In one, the answer would be physicalist: an account of the coin's
movement through the inside of the sorter following the physical laws.  In the other, the answer would be
in terms of how the levers and holes "use" information about the diameter and the weight and how the
sorter "decides" about the coin's direction of movement. Clearly, whoever designed it designed the sorter
in such a way that there is a close mapping between the information story and the physical story.
Because of this mapping, one can talk about the sorter being in various knowledge states.  Of course, if
the sorter that works by levers and holes has a consistent interpretation in terms of knowledge states, then
certainly any sorter that actually had a chip proving theorems or implementing the decision tree
algorithm or the connectionist network will also have a similar interpretation  That is, the knowledge
state and information processing talk is applicable to all devices whose behavior has a decision-making
interpretation, irrespective of the technology used to implement the behavior.

We can see that the logic account, the decision tree algorithm account and the connectionist account are
all alternative languages in which to couch the information processing account.  While all three
frameworks can be used to describe information representation and processing, they are not all
equivalent.  Connectionism enables one to talk about "softer" combination of information using real
numbers, while logic enables us to talk about variables and quantification, and the language of algorithms
enables us to talk about control strategies.  However, our main point here is that they can all be used as
frameworks for describing information representation and processing, and also for implementing
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information processing.  In Newell's language, they can be used both as languages for the Knowledge
Level and for the Symbol Level.

The coin-sorter is a simple device, but it illustrates the issues with respect to understanding biological
brains.  People take a whole range of stances on whether the brain is actually doing information
processing on representations.  Strong materialists argue that representationalist accounts of such systems
are wrong, and the only scientifically acceptable causal story is at the level of the matter that composes
the brain.   Edelman is also against the information processing account, but his counter-proposal is in
terms of an abstract neuronal group selection account, which is still an abstract functional architecture
(i.e., no appeal to physical laws is made), though not an information processing one.  Among those who
agree that there is a causal story to be told at the level of representations, there are many divisions, but
broadly, we can distinguish between connectionist style representations and discrete symbol structure
representations.

The moral of our analysis of the coin-sorter is that for explaining behavior which itself is couched in
informational terms, the information processing account is useful as a stance to describe the biological
brain.  That is, much of the argument on these issues is a result of a confusion between two senses of
information processing using representations.  In one sense, when we ask whether the brain processes
information we are really asking whether it is appropriate to ascribe informational activity to the brain
and in the other sense we are literally describing what the brain or device actually does using one or
another information-processing mechanism.  Ascribing information processing is to take an information
processing stance.  For example we might ascribe information processing activity to the visual system on
the grounds that it produces information about the world.  This is the sense of information processing we
are using when we stand outside the brain and look at behavior and ascribe an information processing
structure to the behavior that we see.  When we look at a black box coin sorter as a decision maker and
work out a model of its input/output behavior, we are ascribing information processing to it.

However, taking an informational stance whereby we ascribe information processing to a device (or
brain) does not commit us to that device literally processing information, or using representations, in the
specific medium appealed to in the description.  There is a fact of the matter about whether the
information processing is being done in one medium or another.  For example, at some point the behavior
of the sorter which employs a Prolog theorem prover will be different from that based on levers and
holes.  When the sorter built using levers and holes malfunctions, the explanation may be given in terms
of physical properties, such as a lever being jammed, while in the case of the Prolog theorem prover, the
explanation might be in terms of an error in the program in the chip or some hardware failure in the chip.
(And in the case of the brain, in addition to the problem of failure modes, there are other issues where the
medium becomes relevant: properties related to  learning, are one example.)  But for most purposes
where people think that the issue is the medium of representation, the issue often turns out to be one that
can instead be formulated at the Knowledge Level.

We can certainly ask similar questions about the brain.  It is a matter of fact whether the brain is an
information processor of the "physicalist" type, one of the connectionist variety, or one that has Turing
machine-like symbols.  There are ways in which different hypotheses can be empirically tested, at least in
principle, over time.  Failure modes are one source of constraints, as are certain properties associated
with learning.  Different architectures make different types of learning easier or harder.  (Note, however,
that Putnam [1988] has argued that even whether a piece of matter is a Turing machine is a just a stance.
The issue is currently hotly debated.)  But as long as we are interested in aspects of the organism's
behavior that have an informational flavor (such as decision-making), then talk of information and its use
is necessary in the analysis, just as it was in the case of the coin-sorter.  Much of the criticism of the
information processing view (from Edelman, e.g.) is based on a narrow view of what the information-
processing talk commits us to.  Conversely, many proponents of information processing explanations are
also taking a narrow view of information processing, and thereby make far more commitments about
internal processes than necessary.

7



02/28/93

In the rest of the paper, we will adopt this broad sense of information processing or knowledge state
account as a useful stance for describing agents to which we ascribe cognitive capacities.

Architectures for Intelligence

We now move to a discussion of architectural proposals within the information processing perspective.
Our goal is to try to place the multiplicity of proposals into perspective.  As we review various proposals,
we will present some judgements of our own about relevant issues.  But first, we need to review the
notion of an architecture and make some additional distinctions.

Form and Content Issues in Architectures

In computer science, a programming language corresponds to a virtual architecture.  A specific program
in that language describes a particular (virtual) machine, which then responds to various inputs in ways
defined by the program.  The architecture is thus what Newell calls the fixed structure of the information
processor that is being analyzed, and the program specifies a variable structure within this architecture.
We can regard the architecture as the form and the program as the content, which together fully
instantiate a particular information processing machine.  We can extend these intuitions to types of
machines which are different from computers.  For example, the connectionist architecture can be
abstractly specified as the set {{N}, {nI}, {nO}, {ζi}, {wij}}, where {N} is a set of nodes, {nI} and {nO}
are subsets of {N} called input and output nodes respectively, {ζi} are the functions computed by the
nodes, and {wij} is the set of weights between nodes.  A particular connectionist machine is then
instantiated by the "program" that specifies values for all these variables.

We have made a distinction between an architecture, the form in which the architecture will accept
content (the programming language form) and the content of the representations themselves.  When we
explain specific types of cognitive phenomena, we will end up coming up with a complex budget of
credit allocation: some aspects will be explained by the properties of the architecture (perhaps some
timing phenomena, and also some aspects of learning), some will be explained by the sorts of information
that is involved in the content.  Credit allocation in this manner is a tricky analytic task.

We also need to make an additional distinction between micro- and macro-architectures, a distinction that
is especially useful for cognition.  A bank of information processors of identical type connected in some
way has a macro-architectural description in terms of the modules and their connections, while the entire
system has a uniform micro-architectural description.

Many AI and cognitive science theories are really theories about the content of knowledge, or types of
knowledge, needed for some task of interest, with minimal commitment to the architecture.  Many
debates in the field, which are ostensibly about the architecture, turn out to be about the types of
knowledge.  For example, Dreyfus [1972] talks about "What computers cannot do."  It turns out that he is
opposed to the idea that intelligence can come out of a system that has a knowledge base which explicitly
and exhaustively represents world facts and relationships in some logical form.  However, there are
people within computational AI who have been making this point as well.  For example, Schank [1982]
has argued that our knowledge is not in the above form of abstract facts at all, but rather in the form of
experiences indexed and abstracted in various ways.  Thus the issue, at least based on Dreyfus'
arguments, is not what computers cannot do, but what certain kinds of knowledge representations cannot
do.  It may turn out that the kind of information that Dreyfus sees as necessary cannot be represented in
computers either, but he doesn't make the arguments for this position.

We have discussed the prospects for separating intelligence (a knowledge state process) from other
mental phenomena, and also the the degree to which various theories of intelligence and cognition
balance between fidelity to biology versus functionalism.  We have discussed the sense in which
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alternatives such as logic, decision tree algorithms, and connectionism are all alternative languages in
which to couch an information processing account of cognitive phenomena, and what it means to take a
Knowledge Level stance towards cognitive phenomena.  We have further discussed the distinction
between form and content theories in AI.  We are now ready to give an overview of the issues in
cognitive architectures.  We will assume that the reader is already familiar in some general way with the
proposals that we discussing.  Our goal is to place these ideas in perspective.

Intelligence as Just Computation

Until recently the dominant paradigm for thinking about information processing has been the Turing
machine framework, or what has been called the discrete symbol system approach.  Information
processing theories are formulated as algorithms operating on data structures.  In fact AI was launched as
a field when Turing proposed in a famous paper that thinking was computation of this type (the term
"artificial intelligence" itself was coined later) .  Natural questions in this framework would be whether
the set of computations that underlie thinking is a subset of Turing-computable functions, and if so how
the properties of the subset should be characterized.

Because of the technological nature of much of AI, only a small number of researchers have been
concerned with intelligence in general.  Most of the work consists of algorithms for specific problems
that are associated with intelligence when humans perform them.  Algorithms for diagnosis, design,
planning, etc., are proposed, because these tasks are seen as important for an intelligent agent.  But as a
rule no effort is made to relate the algorithm for the specific task to a general architecture for
intelligence.  While such algorithms are useful as technologies and to make the point that several tasks
that appear to require intelligence can be done by certain classes of machines, they do not give much
insight into intelligence in general.

Architectures for Deliberation

Historically most of the intuitions in AI about intelligence have come from introspections about the
relationships between conscious thoughts.  We are aware of having thoughts which often follow one after
another. These thoughts are mostly couched in the medium of natural language, although sometimes
thoughts include mental images as well.   When people are thinking for a purpose, say for problem
solving, there is a sense of directing thoughts, choosing some, rejecting others, and focusing them
towards the goal.  Activity of this type has been called "deliberation."  Deliberation, for humans, is a
coherent goal-directed activity, lasting over several seconds or longer.  For many people thinking is the
act of deliberating in this sense.  We can contrast activities in this time span with other cognitive
phenomena, which, in humans, take under a few hundred milliseconds, such as real-time natural language
understanding and generation, visual perception, being reminded of things, and so on.  These short time
span phenomena are handled by what we will call the subdeliberative architecture, as we will discuss
later.

Researchers have proposed different kinds of deliberative architectures, depending upon which kind of
pattern among conscious thoughts struck them.  Two groups of proposals about such patterns have been
influential in AI theory-making: the reasoning view and the goal-subgoal view.

Deliberation as Reasoning

People have for a long time been struck by logical relations between thoughts and have made the
distinction between rational and irrational thoughts.  Remember that Boole's book on logic was titled
"Laws of Thought."   Thoughts often have a logical relation between them: we think thoughts A and B,
then thought C,  where C follows from A and B.   In AI, this view has given rise to an idealization of
intelligence as rational thought, and consequently to the view that the appropriate architecture is one
whose behavior is governed by rules of logic.   In AI, McCarthy is mostly closely identified with the
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logic approach to AI, and [McCarthy and Hayes, 1969] is considered a clear early statement of some of
the issues in the use of logic for building an intelligent machine.

Researchers in AI disagree about how to make machines which display this kind of rationality.  One
group proposes that the ideal thought machine is a logic machine, one whose architecture has logical
rules of inference as its primitive operators.  These operators work on a storehouse of knowledge
represented in a logical formalism and generate additional thoughts.  For example, the Japanese Fifth
generation project came up with computer architectures whose performance was measured in (millions
of) inferences per second. The other group believes that the architecture itself (i.e, the mechanism that
generates thoughts) is not a logic machine, but one which generates plausible, but not necessarily correct,
thoughts, and then knowledge of correct logical patterns is used to make sure that the conclusion is
appropriate.

Historically rationality was characterized by the rules of deduction, but in AI, the notion  is being
broadened to include a host of non-deductive rules under the broad umbrella of "non-monotonic logic"
[McCarthy, 1980] or "default reasoning," to capture various plausible reasoning rules.  There is
considerable difference of opinion about whether such rules exist in a domain-independent way as in the
case of deduction, and how large a set of rules would be required to capture all plausible reasoning
behaviors.  If the number of rules is very large, or if they are context-dependent in complicated ways,
then logic architectures would become less practical.

At any point in the operation of the architecture, many inference rules might be applied to a situation and
many inferences drawn.  This brings up the control issue in logic architectures,  i.e., decisions about
which inference rule should be applied when.   Logic itself provides no theory of control.  The
application of the rule is guaranteed, in the logic framework, to produce a correct thought, but whether it
is relevant to the goal  is decided by considerations external to logic.  Control tends to be task-specific,
i.e.,  different types of tasks call for different strategies.  These strategies have to be explicitly
programmed in the logic framework as additional knowledge.

Deliberation as Goal-Subgoaling

An alternate view of deliberation is inspired by another perceived relation between thoughts and provides
a basic mechanism for control as part of the architecture.  Thoughts are often linked by means of a goal-
subgoal relation.  For example, you may have a thought about wanting to go to New Delhi, then you find
yourself having thoughts about taking trains and airplanes, and about which is better, then you might
think of making reservations and so on.  Newell and Simon [1972] have argued that this relation between
thoughts, the fact that goal thoughts spawn subgoal thoughts recursively until the subgoals are solved and
eventually the goals are solved, is the essence of the mechanism of intelligence.  More than one subgoal
may be spawned, and so backtracking from subgoals that didn't work out is generally necessary.
Deliberation thus looks like search in a problem space.  Setting up the alternatives and exploring them is
made possible by the knowledge that the agent has.  In the travel example above, the agent had to have
knowledge about different possible ways to get to New Delhi, and knowledge about how to make a
choice between alternatives.  A long term memory is generally proposed which holds the knowledge and
from which knowledge relevant to a goal is brought to play during deliberation.  This analysis suggests
an architecture for deliberation that retrieves relevant knowledge, sets up a set of alternatives to explore
(the problem space), explores it, sets up subgoals, etc.

The most recent version of an architecture for deliberation in the goal-subgoal framework is Soar
[Newell, 1990]. Soar has two important attributes.  The first is that any difficulty it has in solving any
subgoal simply results in the setting up of another subgoal, and knowledge from long term memory is
brought to bear in its solution.  It might be remembered that Newell's definition of intelligence is the
ability to realize the knowledge level potential of an agent.  Deliberation and goal-subgoaling are
intended to capture that capability:  any piece of knowledge in long term memory is available, if it is
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relevant, for any goal.   Repeated subgoaling will bring that knowledge to deliberation.  The second
attribute of Soar is that it "caches" its successes in problem solving in its long term memory.  The next
time there is a similar goal, that cached knowledge can be directly used, instead of searching again in the
corresponding problem space.

This kind of deliberative architecture confers on the agent the potential for rationality  in two ways.  With
the right kind of knowledge, each goal results in plausible and relevant subgoals being setup.  Second,
"logical rules" can be used to verify that the proposed solution to subgoals is indeed correct.  But such
rules of logic are used as pieces of knowledge rather than as operators of the architecture itself.  Because
of this, the verification rules can be context- and domain-dependent.

One of the results of this form of deliberation is the construction of special purpose algorithms or
methods for specific problems.  These algorithms can be placed in an external computational medium,
and as soon as a subgoal arises that such a method or algorithm can solve, the external medium can solve
it and return the results.   For example, during design, an engineer might set up the subgoal of computing
the maximum stress in a truss, and invoke a finite element method running on a computer.  The
deliberative engine can thus create and invoke computational algorithms.  The goal-subgoaling
architecture provides a natural way to integrate external algorithms.

In the Soar view, long term memory is just an associative memory.  It has the capability to "recognize" a
situation and retrieve the relevant pieces of knowledge.  Because of the learning capability of the
architecture, each episode of problem solving gives rise to continuous improvement.  As a problem
comes along, some subtasks are solved by external computational architectures which implement special
purpose algorithms, while others are directly solved by compiled knowledge in memory, while yet others
are solved by additional deliberation.  This cycle make the overall system increasingly more powerful.
Eventually, most routine problems, including real-time understanding and generation of natural language,
are solved by recognition.  (Recent work by Patten [Patten, et al, 1992] on the use of compiled
knowledge in natural language understanding is compatible with this view.)

Deliberation seems to be a source of great power in humans.  Why isn't recognition enough?  As Newell
points out, the particular advantage of deliberation is distal access to and combination of knowledge at
run-time in a goal-specific way.  In the deliberative machine, temporary connections are created between
pieces of knowledge that are not hard-coded, and that gives it the ability to realize the knowledge level
potential more.   A recognition architecture uses knowledge less effectively: if the connections are not
there as part of the memory element that controls recognition, a piece of knowledge, though potentially
relevant, will not be utilized in the satisfaction of a goal.

As an architecture for deliberation, the goal-subgoal view seems to us closer to the mark than the
reasoning view.  As we have argued elsewhere [Chandrasekaran, 1991], logic seems more appropriate for
justification of conclusions and as the framework for the semantics of representations than for the
generative architecture.

AI theories of deliberation give central importance to human-level problem solving and reasoning.  Any
continuity with higher animal cognition or brain structure is at the level of the recognition architecture of
memory, about which this view says little other than that it is a recognition memory.  For supporting
deliberation at the human level, long term memory should be capable of storing and generating
knowledge with the full range of ontological distinctions that human language has.

Is the Search View of Deliberation Too Narrow?

A criticism of this picture of deliberation as a search architecture is that it is based on a somewhat narrow
view of the function of cognition.  It is worth reviewing this argument briefly.
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Suppose a Martian watches a human in the act of multiplying numbers.  The human, during this task, is
emulating some multiplication algorithm, i.e., appears to be a multiplication machine.  The Martian
might well return to his superiors and report that the human cognitive architecture is a multiplication
machine.  We, however, know that the multiplication architecture is a fleeting, evanescent virtual
architecture that emerged as an interaction between the goal (multiplication) and the procedural
knowledge of the human.   With a different goal, the human might behave like a different machine.  It
would be awkward to imagine cognition to be a collection of different architectures for each such task; in
fact, cognition is very plastic and is able to simulate various virtual machines as needed.

Like the multiplication machine, perhaps Is the problem space search engine that has been proposed for
the deliberative architecture is also an evanescent machine?  One argument against it is that it is not
intended for a narrow goal like multiplication, but for all kinds of goals.  Thus it is not fleeting, but
always operational.

Or is it?  If the sole purpose of the cognitive architecture is goal achievement (or "problem solving"),
then it is reasonable to assume that the architecture would be hard-wired for this purpose.  What,
however, if goal achievement is only one of the functions of the cognitive architecture, common though it
might be?  At least in humans, the same architecture is used to daydream, just take in the external world
and enjoy it, and so on.  The search behavior that we need for problem solving can come about simply by
virtue of the knowledge that is made available to the agent's deliberation from long term memory.  This
knowledge is either a solution to the problem, or a set of alternatives to consider.  The agent, faced with
the goal and a set of alternatives, simply considers the alternatives in turn, and when additional subgoals
are set, repeats the process of seeking more knowledge.  In fact, this kind of search behavior happens not
only with individuals, but with organizations.  They too explore alternatives, but yet we don't see a need
for a fixed search engine for explaining organizational behavior.  Deliberation of course has to have the
right sort of properties to be able to support search.  Certainly adequate working memory needs to be
there,  and probably there are other constraints on deliberation.  However, the architecture for
deliberation does not have to be exclusively a search architecture.  Just like the multiplication machine
was an emergent architecture when the agent was faced with that task,  the search engine could be the
corresponding emergent architecture for the agent faced with a goal and equipped with knowledge about
what alternatives to consider.  In fact, a number of other such emergent architectures built on top of the
deliberative architecture have been studied earlier in our work on Generic Task architectures [1986].
These architectures were intended to capture the needs for specific classes of goals (such as
classification).

The above argument is not to deemphasize the importance of problem space search for goal achievement,
but to resist the identification of the architecture of the conscious processor with one exclusively intended
for search.  The problem space architecture is still important as the virtual architecture for goal-
achieving, since it is a common, though not the only, function of cognition.

Of course, that cognition goes beyond just goal achievement is a statement about human cognition.  This
is to take a biological rather than a functional standard for the adequacy of an architectural proposal. If
we take a functional approach and seek to specify an architecture for a function called intelligence which
itself is defined in terms of goal achievement, then a deliberative search architecture working with a long
term memory of knowledge certainly has many attractive properties for this function, as we have
discussed.

Subdeliberative Architectures

We have made a distinction between cognitive phenomena that take less than a few hundred milliseconds
to occur and those that evolve over longer time spans.  We discussed proposals for the deliberative
architecture to account for phenomena taking longer time spans.  Some form of subdeliberative
architecture is then responsible for phenomena that occur in very short time spans in humans.  In
deliberation, we have access to a number of intermediate states in problem solving.  After you finished
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planning the New Delhi trip, I can ask you what alternatives you considered, why you rejected taking the
train, and so on, and your answers to them will generally be reliable.  You were probably aware of
rejecting the train option because you calculated that it would take too long.  On the other hand, we have
generally no clue to how the subdeliberative architecture came to any of its conclusions.  If you recognize
someone after not having seen him for twenty years, and that person expresses surprise by asking, "I have
changed a lot in twenty years.  How did you recognize me?", you may come up with something like, "I
bet it is your nose!", but you cannot be sure.  You have no access to how your perception system actually
recognized that person.  Similarly,  you may have your own theory of why you were reminded of
something, but you have no special access to what went on during that reminding.   Freud's model of
mind had complicated unconscious processes working, and in fact, in this view, consciousness was often
misled about the real content of these unconscious processes.

Many people in AI and cognitive science feel that the emphasis on complex problem solving as the door
to understanding intelligence is misplaced, and that theories that emphasize rational problem solving only
account for very special cases and do not account for the general cognitive skills that are present in
ordinary people.  These researchers focus almost completely on the nature of the subdeliberative
architecture.  There is also a belief that the subdeliberative architecture is directly reflected in the
structure of the neural machinery in the brain.  Thus, some of the proposals for the subdeliberative
architecture claim to be inspired by the structure of the brain and claim a biological basis in that sense.

Alternative Proposals

The various proposals differ along a number of dimensions: what kinds of tasks the architecture performs,
degree of parallelism, whether it is an information processing architecture at all, and, when it is taken to
be an information processing architecture, whether it is a symbolic one or some other type.

With respect to the kind of tasks the architecture performs, we already mentioned Newell's view that it is
just a recognition architecture.  Any smartness it possesses is a result of good abstractions and good
indexing, but architecturally, there is nothing particularly complicated.  In fact, the good abstractions and
indexing themselves were the result of the discoveries of deliberation during problem state search.  Being
smarter, from the Newell perspective, is done by converting more and more deliberative problems into
stored recognition patterns through chunking.  The real solution to the problem of memory, for Newell, is
to get chunking done right: the proper level of abstraction, labeling and indexing is all done at the time of
chunking.  Theories of memory representation (such as Schank's) are in this sense content theories of
indices and labels, not architectural theories.   Such content theories of memory are not really in conflict
with the Newell theory of deliberative architecture, since the latter merely gives a way for the content to
come to be the way it is.

In contrast to the recognition view are proposals that see relatively complex problem solving activities
going on in subdeliberative cognition.  Minsky originally proposed a specific architecture for memory
based on frames [Minsky, 1975], which are organized as a network of concepts, each of which contained
prototypical  information about the concept.  Relatively complex procedures were embedded in these
concepts.  More recently, he has outlined a Society of Mind [1986] architecture for cognition.  Cognition
in this picture is a communicating collection of modular agents, each of whom is simple, but capable of
some degree of problem solving.  For example, they can use the means-ends heuristic (the goal-
subgoaling feature of deliberation in the Soar architecture).

Deliberation has a serial character to it.  Almost all proposals for the subdeliberative architecture,
however, use parallelism in one way or another.  Parallelism can bring a number of advantages.  For
problems involving similar kinds of information processing over somewhat distributed data (like
perception), parallelism can speed up processing.  Some problems that require explicit search if done in
serially can be done without search in a parallel architecture.  For example, perception problems often
involve evaluating a number of alternative interpretations and choosing the best.  Parallel machines can
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be designed that simultaneously assess these alternatives and pick the best.  Ultimately, however,
additional problem solving in deliberation may be required for some tasks.

Within the school that views the subdeliberative architecture as representation-processing, there has been
a debate about the medium in which information is represented.  Turing computational architectures have
been the representational frameworks of choice for modeling deliberation.  That same framework was
also used for modeling subdeliberation, until connectionism came along.  Connectionism replaced the
explicit processing of symbolic tokens with a specific type of analog computation.  The original
connectionist proposal of the PDP type [Rumelhart, 1986] were in some ways less powerful than Turing
machines. For example, it had to face the criticism that that kind of computation cannot account for the
systematicity and generativity of natural language which requires variable binding and symbols of some
type [Fodor and Pylyshyn, 1988], which of course the Turing -type computation can handle well.  A
number of ways of enlarging the connectionist framework to give them these capabilities have been
proposed.  Some involve using explicit symbols in connectionist representations [see for example,
Shastri, 1990], while others involve representations that have some of the properties of symbols without
being symbols in the Turing-computational sense [see for example, Pollack, 1990].  In any case, most of
these connectionist proposals are actually implemented and simulated in digital computers, and none of
the functions that they compute are outside the Turing framework.  The problem doesn't really seem to be
with Turing computation per se, but rather the way in which Turing computation has been used in AI and
cognitive science, namely as applications of inference on axiomatically represented world knowledge.

Connectionism has been evolving in a number of directions.  A proposal that has been gaining currency is
that the information processing of the brain is a dynamical system [Pollack, 1993, to appear] defined by
nonlinear differential equations.  It has been claimed, for example, that chaos may be useful as a creative
device for new states in a search [Skarda and Freeman, 1987], and that dynamical systems at criticality
have the unbounded dependencies characteristic of context-sensitive grammars [Crutchfield and Young,
1989].

Edelman argues strongly against information processing theories of cognition on the ground that they
require a prelabeled world of objects and relations, whereas biological organisms, in his view, discover
patterns as regularities in its interaction with the world.  He also argues against connectionism since he
thinks it requires some form of prelabeled information as well.  His architectural proposal  is not couched
as computation on representations, but as one in which successful neuronal groups are selected in a
process similar to Darwinian evolution.  The selection is done in response to the physical interaction of
the organism with the external world.  This process results in neural structures which categorize the
organism's interaction with the world, but these do not represent fixed logical categories, but flexible,
constantly changing categories reflecting the organism's continuing interactions.  Edelman has proposed
additional mechanisms by which these structures develop higher and higher order categorizations and
coordinations.

The motivation behind connectionism and its offshoots is generally couched as opposition to symbolic
computation, and Edelman argues against information processing as well.  But, as we have argued earlier,
the real opposition seems to be to the idea of a representational repertoire that corresponds to the theories
of the external world of objects and relations that we conceptualize in our conscious models of the world.
There is a widespread suspicion that AI and cognitive science have confused the externally visible
constructions of mind (explicit knowledge of the world, grammars, etc) with the raw material of mind.  In
this view, just because we seem to be using pieces of knowledge in our deliberation doesn't mean that this
knowledge was represented in that same form in memory.  The phrase "information processing" has been
too closely associated with the view that what is inside the mind is much like what we seem to have in
our consciousness.  The opposing view is that whatever is inside us is not in the form of abstract
statements of facts about the world, but rather is concretely tied to our interaction with the physical
world, and as such is flexible, open-ended, and constantly changing with each interaction.
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With this proviso accepted, we can take a representational stance towards connectionist networks as well
as Edelman's selection machine.  In the sense of attributed information or knowledge that we argued for
in our discussion of the coin-sorter, Edelman's organism has knowledge and information.  We can, from
outside, watch an Edelmanian brain at some point in its evolution, and say things like, "This organism
knows about x, but not about y."  In the broad sense of information processing that we have been
advocating, Edelman's organism is an information processing agent and its neuronal groups represent
knowledge.  If knowledge of the world can be in the form of on-going abstractions of experience, which,
at the Knowledge Level, can be interpreted as partial, but increasingly more veridical, knowledge of the
world, then all these approaches, including those of Edelman and the connectionists, qualify as
information processing theories.

Is there a "right" architectural theory of subdeliberation?  Later in the paper we discuss how to place the
various alternative proposals in useful relations to each other.

So far we have talked about the  micro-architecture of the subdeliberative system.   A few brief
comments on macro-architecture are relevant.  Fodor [1983] has proposed the Modularity Hypothesis
which asserts that there are separate modules for each of the perceptual modalities, the language modality
and central cognition.  That is, there is relatively little interaction between them until the perceptual and
language modules have completed their interpretation tasks.  These interpretations are available in the
working memory to be used in deliberation.  There is some debate about how much information flow
there is from one modality to another during recognition, but there is general consensus that the degree of
inter-modality information flow is small in comparison with the information processing within each
module.

Situated Cognition

Real cognitive agents are in contact with the surrounding world containing physical objects and other
agents.  A new school has emerged calling itself the situated cognition movement which argues that
traditional AI and cognitive science abstract the cognitive agent too much away from the environment,
and place undue emphasis on internal representations.  The traditional internal representation view leads,
according to the situated cognition perspective, to large amounts of internal representation and complex
reasoning using these representations.  Real agents simply use their sensory and motor systems to explore
the world and pick out the information needed, and get by with much smaller amounts of internal
representation processing.  At the minimum, situated cognition is a proposal against excessive
"intellection."  In this sense, we can simply view this movement as making different proposals about
what and how much needs to be represented internally.  However, there are more radical versions of the
movement in which any internal representation is denied.  Specifically, the movement rejects the idea
that knowledge is represented in the brain and retrieved as needed, but instead holds that knowledge is
constructed by the agent in a complex interaction between neural processes and the external situation.
"[Representations] are the product of interactions, not a fixed substrate from which behavior is
generated" [Clancey and Roschelle, 1991].  The reader will recognize that this view is close to that of
Edelman.

In our discussions so far, we have presented two different views on internal representations.  On one
hand, we have representations in the traditional AI sense of explicit encoding of facts and so on, and on
the other hand, we also said that one can often take an external Knowledge Level stance towards the
content of knowledge that is implied by an agent's behavior.  The situated cognition perspective clearly
rejects the former view with respect to internal (sub-deliberative) processes, but accepts the fact
deliberation does contain and use knowledge.  Thus the Knowledge Level description could be useful to
describe the content of agent's deliberation.  The perspective, however, emphasizes the issues relevant to
the nature of the neural level descriptions and the processes which work with the external situation to
construct representations in deliberation.  The situated cognition movement raises many important issues,
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but solutions to the problems of what sort of neural processes exist and how the interactive process
constructs representations are still in the future.

Integrating the Perspectives

An Integrated View of Problem Solving

We briefly outline how the major components of the cognitive architecture work together in the solution
of complex problems.  The agent is embedded in the physical world, receives sensory information, and
acts on the world.  Deliberation is the central co-ordinating architecture, and its working memory can
contain both symbolic and imagistic data, constructed out of long term representations in response to the
goal at hand, as the situated cognition movement proposes.  Memory can be viewed at the Knowledge
Level as containing this information, but we shouldn't be misled by the Knowledge Level perspective
into thinking that the information that is in working memory was in that form in long term memory.
(This constructivist view of knowledge is a major dividing line between traditional "knowledge
representation" view in AI and the newer situated cognition view that we just mentioned.  To take an
example, schema theories in psychology and frame theories in AI have held that memory is organized in
terms of schemas, which are stereotyped concepts or events.  The newer view would hold that such
schemas are actually constructed in response to the situation, and are not units of memory representation
and organization (Iran-Nejad, 1987.  Since the form and content of information in what we have called
subdeliberative architectures have been open issues, how representations in subdeliberation get
tranformed into goal-specific knowledge in deliberation is certainly also very much an open research
issue.

The agent also has action repertoires which can be thought of as a form of memory, but information
representational talk is much less appropriate for describing them.  Thus we have, abstractly, perceptual,
conceptual and action memories that respond to the goals by controlling overall behavior of the agent.

The degree of abstract problem solving required depends on the kind of goal.  Many goals can be simply
solved by means of one or more of the action repertoires, with little mediation from any thing that one
might call problem solving in the sense of manipulation of representations standing for choices in a
search space.  The goal-action-sensory system triple is highly evolved and integrated to carry out, in a
goal-driven way, such action sequences.

When such action sequences are not immediately available for the goal, there are a number of options.
Working memory may contain abstract representations of problem space alternatives.  The problem space
and the operators available may have not only abstract symbolic components, but imagistic components
as well.  Working memory may also contain previously developed sequences of solutions, or pointers to
external methods, algorithms, or models.  Some of the subgoals are best accomplished by action
sequences, some by operators that are specific to the image modality (e.g., reasoning with mental
images), some by application of abstract knowledge operators, and some by invoking external agents and
models.  Many of the subgoals can be accomplished just by interacting with the world or sensing the
world rather than by reasoning on complex representations.  A common way of avoiding complex
reasoning is to leave representational markers in the physical world, and use action and sensory operators
to "read off" the information.

The above description emphasizes how much of real problem solving is dominated by the fact that the
agent is situated in the world, and how artificial a pure symbolic representation manipulation view can be
for many problems.  At the same time, the above picture is admittedly schematic.  A number of important
issues remain unsolved.  We already referred to the problem of the mechanisms by which knowledge in
working memory is constructed in response to goals.  How the sensor-action system is integrated with
deliberation requires many details to be worked out, but it sets a research agenda that is different from
that of traditional AI.
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Content-Driven AI and Microstructural Accounts are Both Needed

In a strange way, the perspective we just outlined validates both traditional AI and the new emphasis on
microstructure.  Traditional AI, with its emphasis on knowledge and the distinctions needed to express it,
has tried to wrestle content down.  It has been able to do this pretty well up to a point, but because it is
not embedded in a theory with appropriate microstructure and environmental interaction, ends up over-
idealizing content and missing the form in which knowledge really emerges.  The microstructural
accounts have potential to explain the genesis and evolution of knowledge, and, to the extent that they
base themselves on some aspects of biological neural systems, can explain aspects of continuity in
cognition between higher animals and humans.  It is also often hoped that the content problem in AI can
be solved by AI systems that learn from scratch or with little initial knowledge.  That is,  the hope is that
learning will obviate the need to develop knowledge level distinctions.  That, however, seems highly
unlikely for two reasons.  The task of specifiying appropriate initial knowledge states still remains and is
by no means trivial.  The learning problem is also subject to very severe complexity constraints, both in
time and in the environmental specification that is needed for the right kinds of things to be learned.  It is
more likely that the learning theories will give broad insights about content, which in turn might place
useful constraints on knowledge level theories.  Thus the content-driven AI picture and the
microstructure-driven new architectural views need to work side by side for quite a while, hoping to meet
in various ways and places for mutual benefit.

Hierarchy of Leaky Architectures and Cognitive Explanations

We have mentioned connectionism, dynamical systems, and Edelman's selection machine as three
contending proposals for the subdeliberative architecture, and no doubt there will be many others over
time.  But to look for a "correct" answer to the cognitive architecture may be to commit an error in
reification, in believing that there exists one architecture that can be factored off the physical brain in
such a way that the architecture corresponds to and only to cognition (or more generally mentality).  In
the introductory section on dimensions for thinking about thinking, we discussed the problems associated
with factoring off a cognitive architecture from a mental architecture.   A similar issue arises in the belief
that a mental architecture can be factored off the physical brain or the body, and that a clearly defined set
of functionalities can be identified to define mind.  What we have in the brain is a biologically evolved
complex piece of matter working at many levels, informational, chemical, and electrical.  Certainly
different stances can be taken towards it for different analytical purposes, but believing that there exists a
separable architecture called the mental, especially one that has a description at one level, may be
Platonism run amok.

If this view is right, then we can see the contending proposals for the subdeliberative architecture as
approximate descriptions, at somewhat different levels, of a physical reality called brain, which in turn  is
the basis for a host of behaviors that have a mentalistic description.

Consider the mathematical description of an economy in a human society.   It would be strange to regard
the economy as the reality which just happens to be implemented on humans.  Description of an
economic model is an approximate description of certain types of activities in human society.  This is the
analogy that we would like the reader to keep in mind as we describe our view of the hierarchy of
cognitive architecture descriptions.

In this view, the Edelman selection machine is a convenient and approximate description of a machine
which is really a complex chemical machine.  At a higher level, dynamical systems provide another
approximate description, with connectionist descriptions providing yet another level of description.
When the selection machine organizes itself to perform some task, say perception, it should be possible
to see in it a description of evidences being combined, the language in which connectionism works.  The
same machine can, at a more abstract level, also be described in terms of having knowledge and having
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various perceptual goals.  Each of these descriptions captures some aspects and functionalities, but misses
others.

However, this picture of virtual machines all lined up vertically, the deliberative architecture on top of
the recognition architecture on top of say a dynamical systems architecture which in turn is on top of
something else, all the way down to chemistry and physics, might give a false picture of perfect
implementations of a higher level by a lower level.  Biological brains don't really have cleanly lined up
architectures in the way that computers do.  In artifacts like computers we as designers have
conceptualized a pure information processing machine and have created a complete one-to-one
correspondence between the elements of that machine and the elements of a physical machine.  Except
when the machine malfunctions we never have to worry about the lower level machine.  In computer
software design each level of architecture, each virtual machine, sits cleanly upon the one beneath it
without the one beneath it showing through at all.  Each level is closed and separate with respect to other
levels of the architecture.  This sort of architectural arrangement has guided much of our thinking about
human cognitive architecture.

However, in a biologically evolved object like the human brain such a clean separation between levels of
architecture and between software and hardware is impossible.  This is because, first of all, these
architectures we have been describing are all "leaky" virtual machines.  That is, the underlying machine
shows through when the surface structures are stressed or under certain situations. There are layers of
representational structures and representations from other layers peek through at any given layer.  Like in
the case of vision, where in certain optical illusions the physical structure of rods and cones shows
through the interpretive architecture, the architecture of the underlying machines literally shows through
in certain circumstances.  The cognitive phenomena are thus not all going on at one level of architecture.
Secondly, these layers of architectures are not complete, i.e., each level of description does not fully
account for all the phenomena of interest.  Given some complex mental activity, explanation of some
aspects can be given by the Knowledge Level, for some we will need to appeal to the properties of the
connectionist architecture, for some to the properties of the selection machine, and for others we may
simply need to appeal to chemistry and other physical properties.

What description we use to account for the phenomena depends upon our goals.  The cognitive
phenomena we are looking at are not going to admit of any single level of explanation.  They are very
multidimensional, and for some purposes we can account for the behavior by referring to the deliberative
machine, but for other purposes that will not do, and we will have to account for the behavior by
reference to a lower level of the architecture.  This means that the information processing architectures
that we see underlying human cognitive behavior are architectures that we have abstracted for certain
classes of purposes.

This is not to espouse a form of relativism, however.  Not everything counts.  There are lots of machines
that could not be brought up as virtual machines by the brain.  Interestingly, all the virtual machines that
we considered, from Soar to connectionist systems to Edelman's neuroal group selection machines, have
a special feature: they all are oriented towards adaptation and learning.  Thus, there is a relationship
between learnability and types of virtual machine of interest.  Which virtual machine can account for
which data about learning are empirical issues.  There are facts of the matter to be investigated and
discovered.  We can ask of a proposed virtual machine, what work does it do?  How is it useful as level
of explanation?  We can also ask of a particular task how it is being done?  What sort of architecture is
being used to accomplish it?  Although we can potentially model each individual function of cognition,
there may be no abstract platonic engine which accounts for all and only cognitive, or all and only
mental, behavior.  There may well be just various cognitive functions and various machines that can be
used to explain those functions.
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Concluding Remarks

We started by asking how far intelligence or cognition can be separated from mental phenomena in
general.  We suggested that the problem of an architecture for cognition is not really well-posed, since,
depending upon what aspects of the behavior of biological agents are included in the functional
specification, there can be different constraints on the architecture.  That is, it is not clear that, from an
architectural perspective, the idea of a cognitive architecture is a natural kind.  Nevertheless, we said, we
can talk about cognition as a coherent phenomenon of interest if we think of it as that behavior in which
we ascribe knowledge states to the agent.  Newell's Knowledge Level view of an agent is based on a
similar point of view about a cognitive agent.

We reviewed a number of issues and proposals relevant to cognitive architectures.  The computer
metaphor has had its day, but, we argued, the information processing language has significant
explanatory powers left.  We ended with the position that the search for an architectural level that will
explain all the interesting phenomena of cognition was likely to be futile.  Not only are there many levels
each explaining some aspect of cognition and mentality, but the levels interact even in relatively simple
cognitive phenomena.  Ultimately even physics will be required to account for some mental phenomena.

By treating mentality, not to speak of its cognitive component, as ultimately not fully separable from the
physical substrate, we are not being pessimistic about the prospects for cognitive science and AI, just
being careful about what one might expect.  In one sense, this view reinforces the arguments for the need
for grounding [Harnad, 1990], and being and growing as real humans, as the ultimate requirement for
achieving the kind of mentality that we have.  On the other hand, explanations of all sorts of mental
phenomena can come at various levels.  We can build problem solvers, perceivers, cognizers and so on,
and depending upon their physics they may have their own version of mentality.  There is no need for AI
or cognitive science to insist on the various Separability Hypotheses being true in all details for getting
nearer and nearer to the goals of explanation and simulation of mind.
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