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Abstract. Several challenges remain in the effort to build software ca-
pable of conducting realtime dialogue with people. Part of the problem
has been a lack of realtime flexibility, especially with regards to turn-
taking. We have built a system that can adapt its turntaking behavior
in natural dialogue, learning to minimize unwanted interruptions and
“awkward silences”. The system learns this dynamically during the in-
teraction in less than 30 turns, without special training sessions. Here we
describe the system and its performance when interacting with people
in the role of an interviewer. A prior evaluation of the system included
10 interactions with a single artificial agent (a non-learning version of
itself); the new data consists of 10 interaction sessions with 10 different
humans. Results show performance to be close to a human’s in natural,
polite dialogue, with 20% of the turn transitions taking place in under
300 msecs and 60% under 500 msecs. The system works in real-world
settings, achieving robust learning in spite of noisy data. The modular-
ity of the architecture gives it significant potential for extensions beyond
the interview scenario described here.

Keywords: Dialogue, Realtime, Turntaking, Human-Computer Interac-
tion, Natural Communication, Machine Learning, Prosody.

1 Introduction

One of the challenges in giving computers the ability to participate in spoken
dialogue is getting them to perform such activity at a natural pace. Although
people can to some extent adapt to the often stilted interaction resulting from a
system’s lack of human-like turntaking, a system that adapts to human speaking
style would be vastly preferable to one which requires its users to change their
natural speaking style. In this paper we describe our work on building a flexible
dialogue system, one that can adapt in realtime to a person’s speaking style,
based on prosodic features. As a framework for testing our theories we have
created an artificial agent, Askur, that uses prosodic features to learn “polite”
turntaking behaviors: minimizing silences and speech overlaps. Askur learns this
on the fly, in natural, full-duplex (open-mic) dynamic interaction with humans.
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In natural interaction mid-sentence pauses are a frequent occurrence. Humans
have little difficulty in recognizing these from proper end-of-utterance silences,
and use these to reliably determine the time at which it is appropriate to take
turn — even on the phone with no visual information. Temporal analysis of con-
versational behaviors in human discourse shows that turn transitions in natural
conversation take on average 0-250 msecs [II2I3] in face-to-face conversation. Si-
lences in telephone conversations - when visual cues are not available - are at least
100 msecs longer on average []. In a study by Wilson and Wilson [I] response
time is measured in a face-to-face scenario where both parties always had some-
thing to say. They found that 30% of between-speaker silences (turn-transitions)
were shorter than 200 msecs and 70% shorter than 500 msecs. Within-turn si-
lences, that is, silences where the same person speaks before and after the silence,
are on average around 200 msecs but can be as long as 1 second, which has been
reported to be the average “silence tolerance” for American-English speakers
[5] (these are thus likely to be interpreted by a listener as a “turn-giving sig-
nal”). Tolerance for silences in dialogue varies greatly between individuals, ethnic
groups and situations; participants in a political debate exhibit a considerably
shorter silence tolerance than people in casual conversation — this can further
be impacted by social norms (e.g. relationship of the conversants), information
inferable from the interaction (type of conversation, semantics, etc.) and internal
information (e.g. mood, sense of urgency, etc.). To be on par with humans in
turntaking efficiency a system thus needs to be able to categorize these silences.

Artificial agents that can mactch humans in realtime turntaking behavior have
been slow in coming. Part of this is due to poor collection of realtime behavioral
data from interlocutors. A vast majority of current speech recognizers, for ex-
ample, use silence detection as the only means for deciding when to reactively
start interpreting the preceding speech. This leads to unnatural pauses, often
one, two, or even three seconds in length, which may be acceptable for dicta-
tion but is ill-suited for realtime dialogue. Part of the challenge, therefore, is
to get the system to behave quickly enough to match human-style interaction.
However, achieving such low-latency turn transitions reliably cannot be done
reactively [6]; to have any hope of achieving the 200-500 msec levels observed in
human dialogue requires the system to predict what actions to take. This must
be done using realtime perceptual data collected of interlocutor (unimodal or
multimodal) behavior. As inter-subject and real-world scenario complexity puts
practical limitations on the amount of hand-coding that can be brought to bear
on the problem, the most sensible way to approach this problem is to engineer
the system to automatically learn which features of speech can be used for this
purpose.

We want to build a general learning mechanism that can automatically learn
complex turntaking cues in realtime dialogue with human users. Our approach
is based on the Ymir Turntaking Model (YTTM), which models turntaking as a
negotiation process controlled jointly by the participants through loosely coupled
perception-cognition-action loops [6], and proposes modular construction blocks
for this purpose. The original implementation of this model has been expanded
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according to the Constructionist Design Methodology principle [7], to incorpo-
rate learning mechanisms. These allow the system to adjust to interlocutors in
realtime and learn over time, achieving human-like performance characteristics
in under 30 turns. To the best of our knowledge no system has so far been
described in the literature that can adjust its turntaking style dynamically to
individuals to achieve human-like performance characteristics, while continuing
to improve its performance as it interacts with more people.

In Jonsdottir and Thérisson (2008) [8] we described the first version of the
system and presented data on its learning ability when interacting with another
artificial agent (a non-learning copy of itself), listening for features of the prosody
of the Loquendo speech synthesizer to determine its turntaking predictions and
behavior. The results, while promising, described interaction sessions between
the system and a single synthesized voice, with negligible noise in the audio
channel. Even though the learning in such a controlled artificial setup proved
successful we did not consider this to be a guarantee that it would generalize
to a real-life setting when conducting live interviews with people. To evaluate
the learning mechanism in a more realistic scenario we configured the system
to conduct realtime interviews with people over Skype. The interviews were
designed to require no natural language processin7 only prosodical features
inform the behavior of the system as it learns to minimize its silences while
trying to avoid overlaps.

After reviewing related work we describe the architecture of the learning sys-
tem, the experimental setup, and then the results of the human subject study,
showing how the system learns during the interaction.

2 Related Work

Sacks et al. [9] and Walker [I0] were among the first to point out the possible
role of prosody and intonation in enabling people to take smooth turns. Walker
made a well-informed argument that conversants employ relatime processing of
prosodic information contained in the final few syllables of utterances to deter-
mine when the appropriate moment is to give back-channel feedback, as well as
take turn.

J.Jr. was an early computer agent demonstrating this ability [I1]. Using re-
altime processing of a person’s prosody, the system could analyze it fast and
accurately enough to interject back-channel feedback and take turns in a highly
human-like manner. The subsequent Gandalf agent [12] adopted key findings
from J.Jr., based on the Ymir framework, an expandable granular AT architec-
ture. Gandalf analyzed in realtime an interlocutor’s gaze, gesture, body stance
and prosody to determine appropriate turntaking and back-channel opportuni-
ties. This has been done more recently in the Rapport Agent [I3], which uses

! The exclusion of speech recognition and language interpretation in this paper is a
limitation of the current research focus, not a general limitation of the dialogue
architecture we are developing.
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gaze, posture and prosodic perception to, among other things, detect backchan-
nel opportunities. While performing in realtime, approaching human-level pace
in some cases, none of these systems were built to adapt their behavior to their
interlocutors.

Although Reinforcement Learning and other learning methods have been used
to some extent in dialogue systems, most of these attempts have been done
via offline training of the system. Sato et. al [14] use a decision tree to enable
a system learn when a silence signals a wish to give turn and Schlangen [I5]
has successfully used machine learning to categorize prosodic features from a
corpus. Morency et al. [I6] use Hidden Markov Model to learn feature selection
for predicting back-channel feedback opportunities. However, by these studies,
by and large, ignore the active element in dialogue — the need to test the quality
of perceptual categorization by generating realtime behavior based on these, and
monitoring the result. As dialogue is a realtime negotiation process [I7] any such
effort must include both parties in interaction in order to generalize to real-world
situations. (A negotiation process of two parties cannot be simulated without
including the effect that the behavior of one has on the other — in a realtime
feedback loop.) Classifying perceptual features is certainly one step, but doing
so in realtime is another, and generating behaviors based on these — behaviors
that affect the other party in some way — yet a third one.

The Ymir Turntaking Model (YTTM, [6]) addresses realtime multimodal
turntaking, taking both perception and action into account. YT'TM specifies
how perceptual data are integrated to derive how and when certain perceptual,
turntaking and dialogue acts are appropriate, and how to behave according to
such information. While the YTTM does not address learning it is based around
a modular formalism that has enabled us to add such capabilities without re-
structuring its original model. We have based our approach and system on this
model.

3 System Architecture

The goal of our work is to create a dialogue system that interacts at human
speed and accuracy in natural conversation. With primary focus on incremen-
tal processing, adaptability and error recovery, our system autonomously learns
to predict appropriate turntaking behaviors so as to minimize both awkward
silences and overlapping speech in two-party realtime conversation with a hu-
man. Our speaking agent, Askur, performs this task by learning to appropriately
adjust its silence tolerance during the dialogue (See Figure [I).

The architectural framework is described in more detail in [§] and [I§]; a
quick review of this work will aid in understanding what follows. The archi-
tecture, which is in continuous development, currently consists of 35 interact-
ing modules in a publish-subscribe message passing framework. Its modularity
and separation of topic knowledge and behavioral knowledge make it relatively
easy to install and test specific “communication skill” components within the
framework, compared to alternative approaches. The Ymir Turntaking Model
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Fig. 1. The interlocutor’s speech is analyzed in realtime; as soon as a silence is detected
the prosody preceding the silence is decoded. The system makes a prediction by select-
ing a Silence Tolerance Window (STW), based on the prosody pattern perceived in the
interlocutor. This window is a prediction of the shortest safe duration to wait before
taking turn: a window that is too short will probably result in overlapping speech while
a window that is too large may cause unnecessary/unwanted silence.

(YTTM) provides the backbone of the system [6]. Multi-modal deciders use in-
formation extracted from the external (perceptual) and internal environment,
to synchronize the perceived and anticipated contexts, which in turn steer both
perceptual and behavioral system events. Perception modules include speech and
prosody analysis. Prosody analysis is generated as a stream, with an 80 msec
fixed latency; speech interpretation can easily take up to a couple of seconddd.
System responses are generated incrementally in a so-called content generation
module where the topic knowledge lies. Speech is realized using the Loquendo
text-to-speech synthesizer, which currently imparts a 200 msec latency from the
decision to speak to the point when the sound of the first syllable of the first
word reaches the audio speakelﬁ. One way to compensate for this latency is
to pre-start execution with the possibility of canceling it gracefully within 100
msecs, or the chosen Silence Tolerance Window (STW, see[I]).

Our agent contains a learning framework that is separated from the decision-
making through a service interface, with the benefit of thinner deciders and
improved reusability of the learning functionality. The mechanism learns corre-
lations between states and actions and is implemented with e-greedy Q-learning
algorithm. e-greedy algorithms try to avoid getting stuck in a local maximum by

2 While speech recognition does not matter to the present topic of learning turntak-
ing, the system is built to include the full spectrum of speech events. Thus, speech
recognition is an integral part of the system’s architecture.

3 200 msecs is long in the context of human-like turntaking skills, but it is by far the
best performance of any speech synthesizer we have achieved to date.
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exploring less favorable actions in a certain percentage of trials. Q-learning was
chosen partly because of this feature and partly because it is model-free, so the
agent can start with no knowledge of possible states and actions. Modules that
use the learning service contain their own action selection strategy and a general
policy on what to do in unseen circumstances. This leaves action discovery solely
in the hands of the service-recipient module. The recipient module encapsulates
the state-action pair it wants evaluated into a decision for the learner to evalu-
ate. The learner builds a policy of estimated returns for each state-action pair,
which it publishes regularly. Each decider that wants to use learning information
so published needs to reciprocally publish every decision it makes. A decision
contains a state-action pair to be evaluated and a lifetime during which rewards
can be assigned; rewards can also be assigned on timeout, representing scenarios
where the lack of consequence should be rewarded.

3.1 Feature Selection and Extraction

Prior research has shown that the final part of speech preceding a silence can
contain prosodic cues relevant to pragmatics [19]. Following [20] we use the last
300 msecs of speech preceding each silence. The incoming audio signal is handled
in a 2-step process. We use the Prosodica prosody analyzer [2I] to compute
speech signal levels and speech activity. It analyzes prosody in steps of 16 msecs,
producing a continuous stream of data from which high level features can be
extracted.

Two distinct features are used to categorize all silences. The 300 msecs of
the most recent tail of speech right before a silence is searched for the most
recent local minimum /maximum pitch to identify the starting point of the final
slope. Slope is split into three semantic categories: Up, Straight and Down ac-
cording to formula [T} end-point is split into three groups for relative value of
pitch right before silence: Above, At and Below the average pitch for the speaker
(for the whole dialogue period), according to formula[Z. This gives us 9 different
combinations of features.

if m > 0.05 — slope =Up
if (=0.05 <m < 0.05) — slope = Straight (1)
if m < —0.05 — slope = Down

Apitch
" Amsecs’

if d > Pt — end = Above
d = pitchena — pitchg,, if (—Pt<d< Pt)—end= At (2)
if d < Pt — end = Below

where Pt is the average £+ 10, i.e. pitch average with a bit of tolerance for
deviation.

3.2 Formalizing the Learning Problem

The main goal of the learning task is to differentiate silences in realtime based
on partial information of an interlocutor’s behavior (prosody only) and predict
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the best reciprocal behavior. For best performance the system needs to find the
right tradeoff between shorter silences and the risk of overlapping speech. To
formulate this as a Reinforcement Learning problem we need to define states
and actions for our scenario.

Using single-step Q-Learning the feature combination in the prosody preced-
ing the current silence becomes the state and the length of the Silence Tolerance
Window (STW) becomes the action to be learned. For efficiency we have split the
continuous action space into discrete logarithmic values (see Table [I]), starting
with 10 msecs and doubling the value up to 1.28 seconds.

Table 1. Discrete actions representing STW size in msecs

Actions: 10 20 40 80 160 320 640 1280

The reward system used to support this learning problem needs to combine
rewards from both length of silence and the occurrence of overlapping speech.
We have come up with a reward scheme that encapsulates both. Rewards for
decision that do not lead to overlapping speech are based on the size of the
STW; a 10 msecs STW scores -10 while a STW of 1280 msecs scores -1280.
This represents that shorter STW'’s are preferred over longer onedd. Overlapping
speech is currently the only indicator that the agent made a mistake and decisions
causing an overlap are rewarded -3000 points. To stimulate exploration of newly
discovered actions all new actions start with estimated return at 0 points.

For accurate measurement of overlaps and silences the interviewing agent is
equipped with 2 Prosody Trackers, one monitoring the interlocutor and the other
monitoring its own voice. To reduce the number of actual generated overlaps
due to erroneous trials, and to increase the available data that can be learned
from, the agent gets a reward of -2000 for each canceled decision; this is used
in situations where the selected STW turns out to be a tad too short. Another
method of speeding up the learning is confining the learning space to only a
few viable actions in the beginning, discovering new actions only as needed.
This is assuming that there exists a single optimal STW for each pattern with
degrading returns in relation to distance from that point; we do not need to
explore a window of 40 msecs if a window of 80 msecs is considered worse than
one of 160 msecs for a specific state. We start with only 2 available actions, 640
msec and 1280 msec, spawning new actions only as needed; spawning a smaller
window only if the smallest available is considered the best and spawning a larger
one if the largest tried so far is considered the best.

4 Experimental Setup

To evaluate the adaptability of our system we have conducted an experiment
where the system, embodied as the agent Askur, automatically converses with

4 We would like to thank Yngvi Bjérnsson for this insight.
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10 human volunteers over Skype. Each subject is interviewed once, from start to
finish, before the system goes on to the next subject. To eliminate variations in
STW due to lack of something to say we have chosen an interview scenario, in
which case the agent always has something to say until it runs out of questions
and the interview is over. The agent is thus configured to ask 30 predefined ques-
tions, using silence tolerance window to control its turntaking behavior during
the interlocutors’ turn. Askur begins the first interview with no knowledge, and
gradually adapts to its interlocutors throughout the 10 interview sessions.

A convenience sample of 10 Icelandic volunteers took part in the experiment,
none of who had interacted with the system before. All subjects spoke English to
the agent, with varying amounts of Icelandic prosody patters, which differ from
native English-speaking subjects, and with noticable inter- and intra-subject
variability. Each interview took around 5 minutes and the total data gathered
is just over 300 turns of interaction (average 30 turns per subject). The study
was done in a partially controlled setup; all subjects interacted with the system
through Skype using the same hardware (computer, microphone, etc.) but the
location was only semi-private and background noise was present in all cases.

The agent used the rewards, states and actions as described above, with ex-
piration of STW decisions set to 1 second from the end of window; exploration
was fixed at 10%.

5 Results

Given a group of people with a similar cultural background, can our agent learn
to dynamically predict proper turn-transition silences during the dialogue. Can
it adapt dynamically to each interlocutor during the interaction, while still im-
proving as it interacts with more people? It can.

After having interacted with 8-9 people for about 30 turns each, our agent
Askur achives human-level performance in minimizing pauses between turns:
over 60% of turns are under 500 msecs and around 25% of turns are under
300 msecs. Furthermore, it learns to fine-adjust its turntaking behavior to a
brand new person in under 30 turns. It does this while talking — no offline
training trials are conducted. In our experiment the system achieves these levels
in spite of interacting with non-native speakers of English. However, as our
subjects’ prosody patterns turned out to be significantly correlated, the agent
keeps improving as more subjects interact with it.

Analysis of Askur’s policy shows that out of 9 categories of prosody patterns
one particular pattern has a much shorter Silence Tolerance Window (STW)
than other patterns; only 38 msecs. This is for silences preceded with a final fall
falling below average pitch (Down_Below) and is considerably shorter than the
average length of Within-turn silence. Learned STW for all patterns can be seen
in Table 2

The data shows that Askur adapts relatively quickly in the very first 3 in-
terviews, after which 50% of before-turn silences are shorter than 500 msecs
(see Figure2]), compared to 70% in the human-human comparison data. 20% of
silences are shorter than 300 msecs, compared to 30% within 200 msecs for the
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Askur's Response Time and Overlaps During
10 Consecutive Interviews
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Fig. 2. Proportion of silences with human speed characteristics. The system interacts
with each person for 30 turns, then switches to the next person for another 30, and so on
for 10 sessions with 10 different people. For the first 3 interviews performance improves
steadily, peaking at 60% of turn-transition silences under 500 msecs. Switching to a
new person typcially does not impact the performance of the system. However, two
obvious dips can be seen, for participant 4 and participant 8.

best-case human-human dialogue. Due to processing time in perception modules
(73 msecs avg.) and “motor delay” in generating speech (206 msecs avg.) the agent
never takes turn in shorter than 200 msecs (contrasted with 100 msecs for best-case
human simple choice reaction time [22]). This performance in regards to response
time is well acceptable and closely on par with human speed [IJ.

As can be seen in Figure[2 typically switching between people does not impair
prior learning except for participants 4 and 8. We hypothesized that this might
be due to interlocutor diversity, because of the unorthodox learning method
of learning online while interacting with each subject sequentially. To investi-
gate this hypothesis we analyzed the occurrences of the pattern Down_Below
before silences in the speech of our 10 volunteers. The analysis shows that the
occurrences vary between our volunteers from 2,7% to 41,03% of total occur-
rences at end of speech, and from 2,5% to 19,23% just before within-turn silences

Table 2. Learned Silence Tolerance Window (STW) based on prosody pattern

Prosody category STW

Down_Below 38 msecs
Straight_At 160 msecs
Up_Below 320 msecs
Down_At 427 msecs
Straight_Below 440 msecs
Up-Above 480 msecs
Up_At 480 msecs
Straight_Above 640 msecs
Down_Above 640 msecs
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Overlaps
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Fig. 3. Overlapped speech occurs on average in 26,3% of turns. Interestingly, overlaps
periodically occur in 40% of turns without it permanently effecting performance and
overlaps always decrease within each interview.

(see Table[)). This shows a considerable variation between subjects — even though
subjects are all of same cultural background and speak the same (non-native)
language in the sessions. Temporary lapses in performance are therefore to be
expected. Yet the overall performance of the system keeps improving over the 10-
person learning period. We can thus safely conclude that the subjects’ diversity
hypothesis is correct, and that the general trend shown by the data represent
true learning on part of the system.

As can be expected in an open-mic conversation such as ours, overlaps were
relatively frequent, with 26.3% of turns containing overlapping speech. This num-
ber, however, includes all simultaneous sound generated by each participant,
regardless of whether it constituted actual speech, background noise or simply
noise in the Skype channel. In the literature occurrence of overlapping speech
has been found to vary considerably with type of conversation, observed to be
as high as every 10th word in normal telephone conversations and telephone
meetings [23] and 13% for normal conversation [24]. Interestingly, overlaps peri-
odically occur in 40% of turns without it permanently effecting performance and
overlaps always decrease within each interview (see Figure B]). 26.3% overlaps

Table 3. Usage of Down_Below per participant

Participant turn-transitions within-turn

1 7,69% 14,93%
2 14,81% 7,25%
3 34,78% 6,67%
4 6,25% 9,09%
5 2,70% 7,14%
6 27,27% 15,38%
7 41,03% 8,70%
8 18,75% 5,00%
9 11,11% 2,50%
10 25,00% 19,23%
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when using prosody as the only information “channel” for determining turn
transitions can thus be considered a success, especially given system’s the con-
tinuous 10% exploration (we do not “train” the system and then turn learning
off — learning is always on in our system).

5.1 Discussion

Research has shown that in casual conversation people adjust to the speaking
style of their interlocutor, including the length of silences [4], producing a rea-
sonably symmetric set of silences and overlaps for each participant. Our results
show an asymmetry; Askur has in fact a noticably shorter duration for taking
turn than the human subjects. This has a natural explanation, since in our dia-
logue Askur always has the role of an interviewer and the human are always in
the role of the interviewee: The interviewer always knows what question to say
next, whereas the human subject does not know what question comes next and
has to think about what to answer. There is therefore typically a natural pause
or hesitation while they think about what to answer to each question.

An important question that arises when learning on-the-fly against human
subjects is whether the humans are actually participating in the learning perfor-
mance of the system, essentially contributing to the learning by adapting their
behavior to the system, consciously or unconsciously. If so this could conflate the
results, reinforce “bad” behaviors of the system or otherwise bias the results. To
answer this question we analyzed the data for cross-participant trends in mod-
ified behavior. While the use of filled pauses cannot be measured directly one
way to detect them is to look at the duration of people’s within-turn silences,
which should be decreasing over time for each participant if the conflation hy-
pothesis was correct. However, this was not the case: Average silence length stays
constant throughout the interview for the participants (see Figure [4]).

Average Length of Silences
1900 m
]
1000
8
k-] i — & — o
; 500 - —p = X \.
Do e > 3 — o
0
5 10 15 20 25 30 35
Turn
——Askur taking turn Askur within turn —i— People taking turn ——People within turn

Fig. 4. Average silences when the agent interviews people. People’s silences before
taking turn are longer due to the fact that people have to think of what to say in
response to the questions made by Askur. The length of silences within turn are con-
stant throughout the interview verifying that people are not modifying their silences
(by using filled pauses etc.) to accommodate the system.
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In addressing this issue we also analyzed the use of final-fall preceding both
within-turn and turn-transition silences. If people were learning to modify their
use of final fall as a turn-giving signal we should see, towards the latter half of
each interaction, a decrease in the occurrence of that pattern before within-turn
silences and possibly increase before turn-transition silences. The data shows,
however, that only 2 of the participants show this behavior while another 2
show the opposite behavior. The remaining 6 either decrease or increase the
use at both within-turn and turn-transition silences (see Figure [H). No other
common behaviors have been spotted that would suggest that the interlocutor
is specifically aiding in the system’s performance.

Occurrences of pattern Down_Below Occurrences of pattern Down_Below
preceding inter-turn silence preceding end of turn
L, 50% 50% —_
H —
8 0% 40% — ok
£ -
5 30% o 30% e
=
T 20% ’—-""‘4_4 20% W“‘
% — %"";7 --"/ S — — |
£ 0% — — —— 10% - —
g 0% = = 0% —Q%x—
start end end start
——1 2 —h—3 ——4 ——5 &§——7 8 -9 —8—10 —4—1 -2 —k—3 ——4 ——5 5 =7 8 9 ——10

Fig. 5. Occurrences of Down_Below in people’s speech has been measured for each
interview. No trend in behavior is found that applies to majority of speakers.

6 Conclusions and Future Work

We have built a dialogue system that learns turntaking behaviors, minimizing
silences and speech overlaps, using realtime prosody analysis. The system learns
this on the fly, in full-duplex (open-mic) dynamic, natural interaction. The sys-
tem can efficiently take turns with human-like timing in dialogues with people.

The system improves its performance by learning which prosodic information
helps in determining appropriate turn transitions, combining features of pitch
including final slope, average pitch and timed silences, as a evidence for predict-
ing the desired turntaking behavior of interlocutors. As the system learns on-line
it is able to adjust to the particulars of individual speaking styles.

We evaluated the system in realtime interaction with naive users. The system
gets close to human-like speed when taking turns, with turn-transition silences
as short as 235 msecs. 60% of turn-transition silences are shorter than 500 msecs
after roughly 90 turns of learning, compared to 70% in human conversation.

In this evaluation all interlocutors were from the same cultural pool and thus
had correlated intonation style, even though they were not speaking their native
language. The learning system is embedded in a large expandable architecture,
with significant potential for extensions beyond the interview scenario described
here, including e.g. selecting dynamically between the goals of being polite
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(no gaps, no overlaps) and “rude” (always trying to interrupt if it has some-
thing to say). As the system is highly modular it can be broadened to include
multimodal perception such as head movements, gaze, and more.

In the near future we expect to expand the learning system to handle more di-
versity in interactions and variation between individuals. We also plan to expand
the system to show dynamic selection of dialogue styles/goals such as politeness,
agression and passivity. Semantic analysis of speech content will be integrated
seamlessly with the turntaking capability, with a hope of going well beyond
present-day dialogue engines in flexibility and human-likeness.
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