
Two Approaches to a Plug-and-Play Vision Architecture

– CAVIAR and Psyclone

Thor L ist1, José Bins1, Robert B. Fisher1, David Tweed1, Kr istinn R. Thór isson2

 1University of Edinburgh 2Reykjavík University
 Institute for Perception, Action and Behaviour Center for Analysis & Design of Intelligent Agents
King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK Department of Computer Science
 Email: thor.list@ed.ac.uk Ofanleiti 2, 203 Reykjavik, Iceland

Abstract
This paper compares two solutions for human-like
perception using two different modular “plug-and-play”
frameworks, CAVIAR (List et al, 2005) and Psyclone
(Thórisson et al, 2004, 2005a). Each uses a central point of
configuration and requires the modules to be auto-
descriptive, auto-critical and auto-regulative (Crowley and
Reignier, 2003) for fully autonomous configuration of
processing and dataflow. This allows new modules to be
added to or removed from the system with minimal
reconfiguration. CAVIAR uses a centralised global
controller (Bins et al, 2005) whereas Psyclone supports a
fully distributed control architecture.
We implemented a computer vision-based human behaviour
tracker for public scenes in the two frameworks. CAVIAR’s
global controller uses offline learned knowledge to regulate
module parameters and select between competing results
whereas in Psyclone dynamic multi-level control modules
adjust parameters, data and process flow. Each framework
results in two very different solutions to control issues such
as dataflow regulation and module substitution. However,
we found that both frameworks allow easy incremental
development of modular architectures with increasingly
complex functionality. Their main differences lie in runtime
efficiency and module interface semantics.

Introduction

Several software architectures for human-like perception
have emerged over the past years in research areas such as
computer vision, human-computer interaction and
autonomous robotic platforms. Early examples are SIGMA
(Matsuyama and Hwang, 1993) and VISIONS (Hanson and
Riseman, 1988). More recent perception architectures
include the Leeds People Tracker/ADVISOR (Siebel,
2003), the Robust Tracker (Crowley and Reignier, 2003) as
well as very advanced neural network-like perception
systems like the Neuron-Like Processing Machine (NLPM)
(Cohen, 2004).
Computer vision research addresses challenging problems,
requiring architectures that mix data flow and control
structures in complex ways. The interest in modular
frameworks rises from the need to explore relatively large
variations in architecture during their construction.

Variations to be explored can range from simple changes in
how parameters are tuned to module swapping. The
explorations are made over weeks or months; final
solutions will certainly require parameter tuning at runtime
and may even require dynamic module swapping.
Although prior approaches tackle many of the same kind of
challenges such as data flow regulation, process scheduling
and managing situations of high data rates between many
modules which need more resources than the system can
provide, each specific application and implementation has
unique properties which have to be addressed. A plug-and-
play perception architecture should provide solutions to the
common problems while providing the flexibility each
module needs for independent processing of information.
The CAVIAR framework (List et al, 2005) is based on past
research by (Brown and Fisher, 1990) (Crowley, 1995)
(Crowley and Reignier, 2003) and is designed specifically
to allow multiple concurrent implementations of equivalent
modules to work in competition with each other, to be
plugged in to compare different approaches to problems
given varying conditions. A key research goal is
investigating the control mechanisms and algorithms
needed to allow this flexibility by offline learning of
module parameter spaces (Bins et al, 2005).
The Psyclone framework (Thórisson et al. 2004, 2005a) by
Communicative Machines is based on prior research on
interactive real-time systems (Thórisson, 1999) and their
construction (Thórisson et al. 2004). A key goal of this
framework is to allow the creation of flexible systems,
enabling researchers to test various architectures quickly
through a plug-and-play modular approach, and to enable
A.I. researchers to share their work more effectively.
This paper investigates the solutions offered by each
approach and compares the resulting architectures when
applied to the task of monitoring human behaviour in
public areas through vision. We will look at differences in
the approach to runtime control of parameters and the flow
of data, and how new modules can be inserted into an
existing system during its development stages to
comparatively develop a modular system. Other differences
between the frameworks that directly affect the present task
will also be discussed, such as run-time performance and

semantics of module interfaces. The actual vision
algorithms used are identical in both cases.
The next sections will provide a quick overview of the
general features of the CAVIAR and Psyclone frameworks,
focusing on the features that are different between the two.
The solutions to the vision problem are then presented for
each framework, and we conclude by briefly discussing the
merits of each one. A comprehensive overview of the two
frameworks would be too much for this paper. We review
mainly those parts which we believe to be sufficient and
relative to the purpose of the comparison. The reader is
directed to (List et al. 2005) and (Thórisson et al., 2005b)
for more detail.

CAVIAR

The CAVIAR system is based on one global controller and
a number of modules for information processing. Each
module provides a complete description of itself using
CVML (List and Fisher, 2004) including its input and
output datasets and a full list of public parameters. Each
parameter description includes recommended usage such as
minimum, maximum and incremental step as well as
dependencies on other parameters.
The implementation includes a Base Module which
contains all the common module functionalities such as the
interface to the controller and to other modules for
managing parameters. This way module implementers only
have to deal with their own algorithms without worrying
about bookkeeping tasks.
After each run (where one set of input data is processed to
produce output data) each module will report back to the
controller on the overall quality and quantity of the results.
This is called the high-level feedback and the Base Module
adds information about time and resources spent.
Each module can be auto-regulative in that it receives
feedback from the controller and other modules in the form
of more of this output and less of that output in terms of
quality and quantity. The module may know better than
anyone else how to best achieve this by regulating its own
parameters or perhaps switching to use another algorithm.
A special kind of modules called Agents are used for
simple measurements such as overall scene brightness.
They assist the controller when making choices or
providing feedback.
The CAVIAR controller is a global implementation of a
classical system controller. At startup it reads a list of
possible modules to use along with the overall goal of the
system in terms of available input and desired output.
Based on this and the auto-description of each module the
dataflow is computed including which modules are needed
in which flow configuration and whether one or more
modules are each other’s equivalent.
The controller can run in two modes, an online real-time
mode and an offline learning mode. During the offline
learning the controller runs through one or more video
sequences where ground truth labelling has been provided.
It can step-by-step compare its own results to the ground

truth and for each module explore parts of the parameter
space to learn which parameters have which influence on
the output of that module and the system as a whole. It
stores this knowledge in either of two ways, neural
networks or dynamically created rules, to make use of the
learned knowledge in the online mode when real-time
constraints prevent any complex exploration of the
parameter space, but modules nonetheless need to be tuned
to deal with varying external conditions. The learning
phase can also be used to determine which equivalent
modules work best in which circumstances.
CAVIAR modules communicate data, feedback and control
information through a fixed API, described in detail in (List
et al. 2005). All communication uses CVML (List and
Fisher, 2004).
The CAVIAR architecture is written in a combination of
C++, Scheme and logical rules using Clips. It makes use of
both the Imalab image processing library (Lux, 2004),
Intel’s OpenCV (Bradski, 2000) and the CoreLibrary (List
and Fisher, 2004). The modules communicate with each
other and the controller via a public API which can be used
either directly in-memory, through files written to disk or
across the network using TCP communication. Data
content is transferred using CVML (List and Fisher, 2004).

Psyclone

Psyclone is a generic framework for AI, which includes
support for multimodal perception of vision, audio, speech
and other sensor input, as well as modular cognitive
processing and multimodal output generation, such as
speech and animated output.
Psyclone implements an open standard called OpenAIR1
for both local and networked messaging and data
transmission. It is a proven protocol which contains
semantic and ontological specification of information.
The Psyclone framework consists of a number of
information dispatchers called whiteboards (Thórisson et
al., 2005b) and any number of modules. An underlying
support system facilitates system setup and maintains basic
system information about modules and dispatchers.
Each whiteboard functions as a publish/subscribe server to
which information is posted and from which information is
dispatched to modules which are subscribed to that
particular type of information. A whiteboard will keep data
for a period of time, stored in a large searchable database
for later retrieval by modules needing past information.
When new data is posted to the whiteboard it consults the
subscriptions and will make sure that all subscribed
modules receive the information they requested, including
retrieval of any additional past or current data.
Like CAVIAR, each module has a full description of itself
which is usually entered into the central configuration file,
but can be manually overwritten by the module at any time.
This description includes a list of public parameters, a list

1 http://www.mindmakers.org

of subscriptions including data types and dispatchers,
additional information to be retrieved along side the
triggering data, and the output data types and destination
dispatchers. It also includes information about the actual
module code to run which is automatically started either
from a shared library or an external executable.
To manage the runtime behaviour of modules Psyclone
supplies the concept of contexts, which are globally
announced system states. Each module can be assigned one
or more such contexts and will not run without at least one
of them being true.
The dataflow is regulated completely autonomously based
on module priority and subscriptions in different contexts,
as is the computations that each module performs. There is
no overall global control monitoring every part of the
system to make sure that the right modules perform
adequately based on its inputs and outputs. However, local
control modules can be created to monitor the performance
of individual or groups of modules and make decisions
about when to change parameters or even the dataflow by
changing contexts. This way control can be achieved in a
distributed way where control units can monitor and
regulate anything from a single module to every module in
the system, and they base their decisions on current and
past data available from one or more Whiteboards.
The Psyclone architecture is written completely in C++ and
runs on a number of operating systems including Unix,
Windows and Macintosh. It is based on the CoreLibrary
(List and Fisher, 2004) and supports the OpenAIR protocol
for local or network communication and CVML (List and
Fisher, 2004) for information content. Modules are created
either as Cranks in C++ to run inside Psyclone or as Plugs
in languages such as C++, Java and LISP to run outside
Psyclone.

Application: Computer Vision

We applied the two architectures to the practical problem
of using a single static camera to monitor human behaviour
in public scenes such as streets or shopping centres, where
a few tens of people can be in the scene at the same time.
The modular approach taken includes image acquisition,

low-level image analysis for dense and sparse image
features, tracking and detecting movement patterns of
objects and finally analysing these to identify the objects’
roles. We first defined these modules in the CAVIAR
framework and the resulting dataflow can be seen in Fig. 1.

In the top left corner the Grabber module outputs the
RawImage dataset which contains an image acquired from
the camera with a timestamp. The RawImage dataset is
used by three modules, the DenseImageFeatures module,
the SparseImageFeatures module and the Tracker module.
The latter also uses the outputs from both the
DenseImageFeatures and the SparseImageFeatures modules
and based on all this data will output a list of
TrackedObjects. There are now two Movement modules
which both analyse the TrackedObjects for movement
patterns and produce MovementOutput. The Role module
uses this to assign roles to each TrackedObject and from
these roles the Context module determines the context of
the scene being monitored.
An example could be three people being tracked in a
shopping centre. Each walks very slowly near shop
windows, stop frequently and none of them interact with
the others. The movement module will produce information
on their slow and stopping movement, which the role
module will assign to be a browsing behaviour. This
becomes increasingly complex when more people are in the
scene interacting with each other and for more information
on this see (Bins et al, 2005).

Grabber

Tracker

TrackedObjects

Movement1

MovementOutput Role

RoleOutput

Context

ContextOutput

Movement2

DenseImageFeatures

SparseImageFeatures

DenseFeatures

RawImage

SparseFeatures

Image Processing Modules
Tracking Modules

Behaviour Modules

Fig. 1. The system data and processing flowchart from CAVIAR

RawImage

Grabber
RawImage

Tracker

TrackedObjects

Movement1

MovementOutput

Role

RoleOutput

Context

ContextOutputMovement2

DenseFeaturesDenseImageFeatures

SparseImageFeatures

RawImage

RawImage

SparseFeatures

DenseFeatures

SparseFeatures

TrackedObjects

TrackedObjects

MovementOutput

MovementOutput

RoleOutput

DenseFeatures

Whiteboard: Behaviour

Role Storage

Context Storage

Image Processing Modules Tracking Modules Behaviour Modules

Whiteboard: Tracked Objects

TrackedObjects
Storage

Movement Storage

Whiteboard: Image Data

RawImage Storage

DenseFeatures
Storage

SparseFeatures
Storage

Fig. 2. The system data and processing flowchart from Psyclone. (Data structures are listed twice, once for input and once for output.)

The equivalent process and data flow produced by the
Psyclone system is shown in Fig. 2. There are more
elements because each data structure is listed once for
every output and once for every input. This flow also
includes the whiteboards from where the data is sent to the
modules which have subscribed for this and stored for later
retrieval.

Defining the modules
The overall idea behind both frameworks is to make it
possible for people with topic-specific technical skills to
implement modules in their areas of expertise into a system
containing other people’s work taken from a library of
existing modules. Module implementation and testing
should be quick without having to struggle with issues like
network communication and dataflow.
In both CAVIAR and Psyclone modules are created using
standard third-party libraries and can be developed and
tested in the system directly. A module can be created with
only a few lines of code and from there gradually increase
the complexity while tested in the architecture using real
data where other modules are using the output.
Equivalent modules or groups of modules can replace or
compete with others to provide better or more confident
results in a changing environment.
When creating a module in CAVIAR one can either choose
an existing module from the project or create a new module
from scratch. Either way, the object constructor code has to
set the module description in XML which includes
information about parameters and input and output
datasets.

Fig. 3 shows the CAVIAR module description for the
SparseImageFeatures module. It includes two public
parameters, one called MaxFeatures which is used for
setting a maximum number of features to output, and the
other called Sigma, which is a scale factor. The module
also specifies two input datasets, RawImage and
DenseFeatures which it needs to compute its output dataset
called SparseFeatures, containing the variables Time and
FeatureVectorList.

Other than setting the description one needs to define a
run() function which computes and stores the output
dataset from the input data and parameters. Based on this
information, the controller will include the module in the
system dataflow after the Grabber and DenseImageFeatures
modules and before the Tracker which needs the
SparseFeatures dataset, as seen in Fig. 1.
When creating the same functionality in Psyclone one can
define the module in the central XML configuration file.
This definition is seen in Fig. 4 and like in CAVIAR it has
two parameters, requires two inputs and produces one
output.

In addition, using the Psyclone context mechanism, this
module can choose to change the system context if the
scene is too dark or bright. Typically, vision systems would
either use a module which could handle this; CAVIAR is
able to swap out a module with another for cases like this.
The global context system in Psyclone is a unique construct
that provides for an even better solution to this problem.
The run() is specified as the function SparseFeaturesCrank
in the library called Image, which contains the code to
receive the input data and with the use of the parameters
should produce the output dataset. The module’s
subscriptions results in the data flow seen in Fig. 2.

Plugging in an equivalent module
Initially we defined the systems with only one Movement
module after which we decided that we wanted to add
another module with a slightly different algorithm. In both
architectures we renamed the Movement module
Movement1 and added an identical module Movement2
which only varied from the original by the code it used to
compute the output.
The CAVIAR system detected that this new module was
equivalent with Movement1 as shown by the crossover
lines between them in Fig. 1. The Psyclone system added
this new module as another source of the output dataset
MovementOutput which in turn is made available to the
Role module in addition to the MovementOutput dataset
produced by Movement1.
The main difference is that in CAVIAR the decision on
whether to use the output from Movement1 or Movement2
is made by the controller based on the feedback of the

<description>
 <parameters count="2">
 <parameter name="MaxFeatures" type="integer" optional="no">
 <description>Maximum number of features</description>
 <range from="1" to="1000" step="5" />
 <default>100</default>
 </parameter>
 <parameter name="Sigma" type="float" optional="no">
 <description>Scale factor</description>
 <range from="0" to="1"/>
 <default>0</default>
 </parameter>
 </parameters>
 <dataflow>
 <inputs count="2">
 <input dataset="RawImage" />
 <input dataset="DenseFeatures" />
 </inputs>
 <outputs count="1">
 <output dataset="SparseFeatures">
 <variable name="Time" type="Time" />
 <variable name="FeatureVectorList" type="FeatureVectorList" />
 </output>
 </outputs>
 </dataflow>
</description>

Fig. 3: The CAVIAR description for the DenseImageFeatures module.

<module name="SparseImageFeatures">
 <description>
 Produces sparse features from the raw image and dense image features
 </description>
 <parameter name="MaxFeatures" type="Int" max="1000" min="0" default="100" />
 <parameter name="Sigma" type="Double" max="1" min="0" default="0"/>
 <spec>
 <context name="Scene.Normal">
 <phase id="Process incoming messages">
 <triggers>
 <trigger from="ImageData" type="Input.Video.RawImage"/>
 <trigger from="ImageData" type="Features.DenseFeatures"/>
 </triggers>
 <cranks>
 <crank name="Image::SparseFeaturesCrank"/>
 </cranks>
 <posts>
 <post to="ImageData" type="Features.SparseFeatures" />
 <post to="ImageData" type="Psyclone.Context:Scene.Dark" />
 <post to="ImageData" type="Psyclone.Context:Scene.Bright" />
 </posts>
 </phase>
 </context>
 </spec>
</module>

Fig. 4. The Psyclone definition for the DenseImageFeatures module.

modules and information from Agents. In Psyclone both
datasets are made available and it is up to the Role module
to compare the two and decide which one to use. A detector
module can also be created to switch on or off the
appropriate Movement module or to provide additional
information assisting the Role module in deciding which
data to use.
In theory it is easy to create modules which do very simple
isolated tasks, however, in the real world of research testing
the functionality of a module during development can be
difficult without proper insight into what the system is
doing step by step. Although CAVIAR provides feedback
mechanisms, having ‘a look inside the running system’ is
often desirable and Psyclone provides this via a built-in
monitoring system called psyProbe. With a standard web
browser developers can monitor every activity in the
system, from timestamped information on the whiteboards
to specific content of individual messages. The running
system can be temporarily halted by switching context and
manual message posting can introduce new data. This
proved to be an important functionality when developing
the vision architecture.

The running system
When running the systems the CAVIAR controller starts by
initializing all the modules and fully calculating the
dataflow. It then runs each module in turn with the specific
goal to maximise the availability of the datasets needed.
After each module has completed the controller obtains the
feedback with information about the quality and quantity of
the output as well as the time and resources spent.
The Psyclone system starts by creating all the modules, but
unlike CAVIAR it does not compute the dataflow as this is
done dynamically as the system runs based on the global
system contexts and module states. The Grabber acquires
the first image from the camera, posts this to the
Whiteboard ImageData which in turn triggers the
DenseImageFeatures module and so on.
In CAVIAR the controller would compare the feedback
from the two equivalent modules Movement1 and
Movement2 and based on the quality report, as well as
information from relevant Agents, choose which output to
use. If the controller had access to offline learned
information it would furthermore have been able to
evaluate the quality statement from each module by adding
its own confidence weight to the ‘supposed’ quality.
The same two modules in Psyclone both added their output
to the TrackedObjects Whiteboard which in turn triggered
the Role model. Because of the identical timestamps for the
triggering datasets the Role model could see that the
information was produced based on the same input, yet by
different modules, and could use either or both for its own
processing, without needing additional help to choose
between them.

Results

We will now review the main differences between the two
frameworks, from an architectural standpoint.
The main difference between the solution implemented in
CAVIAR and Psyclone relates to the different way in
which they enable global versus distributed control.
CAVIAR completely relies on one global controller that
knows everything about every module and consequently
also has to deal with everything and every module. It has to
know about modules individually, in groups and as a whole
system and governing so many layers of information is
quite a big task.
Psyclone uses completely distributed control; no global
control mechanisms are provided as default. However,
monitoring and control can be added to regulate any level
of the system, from individual modules to the global state.
The benefit is that one can construct a hierarchy of control
where no individual controller has to know anything
beyond the issues it is dealing with, much like (Crowley
and Reignier, 2003), although they require a controller to
be added for each module and each small group of modules
in turn, making the Psyclone design simpler.
The drawback of a distributed control approach is that no
single controller knows everything and it is therefore easy
to lose sight of what is actually going on globally when
trying to mend things locally. Psyclone imposes less
structure on the design; increased flexibility puts a higher
burden on the designer to ensure the soundness of the
architecture.

Dynamical dataflow
The dataflow in both frameworks is automatically
generated from the modules’ XML auto-description. In
CAVIAR the paths are initially created at startup and can
be modified by the controller at any time, both to use an
equivalent group of modules but also to change the flow
completely if needed. The knowledge needed to decide
about such changes is usually learned during the offline
runs and consists of a combination of neural network
decisions or logical rules. In other words, the controller
will choose a change from a finite number of possible
actions learned from past experience.
In Psyclone the change of dataflow can happen on many
levels. Equivalent modules can, as in CAVIAR, compete
with the quality of their results and decision modules can
choose to activate or deactivate modules to change the flow
of information. A Psyclone module mechanism allows a
designer to put multiple named methods in each module
and construct rules that determine complex conditions for
using each method. This way a module can cycle through
this set of methods at runtime, using whichever method is
appropriate at the time. In effect it resembles a vast
parameter change in CAVIAR, but in CAVIAR a single
module would have to implement all the different
algorithms in one mesh and use parameters to choose

between them. This would make the module
implementation extremely complex and very hard to work
with.
Any perception system will naturally go through many
situations in which data processing will need to be done
slightly or very differently from other situations. In
CAVIAR each situation would activate a specific set of
modules, probably different from the set used in other
situations. When handling a large number of situations
modelling and regulating the parameters of so many
modules required could become unmanageable, especially
if offline training is needed. The use of contexts in
Psyclone solves this problem and adds another level of
modular control. Contexts allow modules in Psyclone to
radically change their behaviour based on the overall
requirements of the system. A module could in one context
be searching for one thing and in another doing something
very different, using a similar or completely different
algorithm. This mechanism can be used to reduce the
number of separate modules in a system while still allowing
the implementers to deal with disparate situations
independently.

Handling the unexpected
Both resulting architectures are able to handle sudden
changes to the perceived environment such as lighting
changes, but they deal with these changes in very different
ways.
The architecture implemented in CAVIAR uses agents to
detect such changes and based on their output, changes in
module parameter settings or even the global dataflow can
be made. The CAVIAR controller is able to compensate for
this faster if prior offline training included similar changes.
The controller may then know which modules are more
sensitive to these changes and which parameters to tune to
stabilise the output from these. These decisions are made
using either neural networks or learned logical rules. With
no prior training the CAVIAR controller relies on the auto-
regulation of each module to make adjustments for such
situation, however, tuning them to work well under many
varying conditions is very hard. This is one of the main
reasons that knowledge-based systems have failed in the
past (Draper, 2003).
Psyclone has no built-in support for offline learning,
however one can create sets of control modules which
modify parameters and monitor the results, in a kind of
dynamic equilibrium. If going one way turns out to be
wrong, decisions will be made to counter this rather than
knowing how to solve the global problem as a whole. All
modules, including control modules, have full access to all
data in the system via the whiteboards, past and present
(within reason) and can ultimately make use of contexts to
get out of a situation that cannot be remedied by parameter
tuning. Additionally, these modules could be configured for
offline learning of the parameter spaces of individual or
groups of modules and store this knowledge in another
Psyclone construction called a Catalog for later online use.

Pr ior ities
At runtime, different datasets may be needed at different
times and with varying degrees of urgency. In CAVIAR a
module will be activated when the data it needs is
available; there is no notion of priority of data or
processing. This means that when the system is stressed the
more important data is treated with the same priority as
analysing more subtle information.
In Psyclone each module has two priority settings, for data
transmission and for runtime. The former determines when
information is made available to the module by specifying
the relative importance of a dataset compared to other sets,
and the latter the relative processing priority of each
module over others. This allows the system designer to
prioritise certain information paths over others, creating a
hierarchy of data significance, from the absolutely critical
to the supernumerary while also taking into account the
computing cost of producing these.

Ease of Use
We have discussed the main architectural differences; we
will now look at some numbers regarding usage and
runtime behaviour.
 Table 1 shows the time it took to work with the basic and
advanced building blocks of creating a modular system,
from installing the example system, creating modules from
the built-in pool of examples and new modules with own
code, to working with control. The work was done by a
single developer who knew the vision application
intimately, as well as both frameworks. Basic control
consisted of simple parameter tweaking and more advanced
control included also changing the flow of data. Although
the data is anecdotal for the two systems built, we believe it
to be indicative of there being very little difference between
the two frameworks in terms of usability, for someone who
is experienced in the two systems.

Task CAVIAR Psyclone
Time to install the example system 3 hour 1 hour
Time to define a built-in module 1 hour 1 hour
Time to create a new module 2 hours 1 hour
Time to implement basic control Built-in 1 hour
Time to implement advanced control 1 hours 2 hours

Table 1. Ease of use and developing new modules and control.

Runtime Per formance
Table 2 shows the runtime performance characteristics
computed for the two systems. Since the vision algoritms
are completely identical in the two architectures the
numbers expose the efficiency of the implementation of
each framework, CAVIAR and Psyclone. We tested three
modules performing low to medium image analysis tasks
(two edge detectors and one optical flow); the numbers
reflect the difference between the respective ways in each

framework of handling the flow of voluminous data and
system control.

Task CAVIAR Psyclone
Average time to run all three modules 845 ms 65 ms
Same when changing 3 parameters 1212 ms 86 ms
Average time per parameter 122 ms 7 ms

Table 2. Runtime performance comparison.

The third row in Table 2 was calculated by taking the
difference between the average runs with and without
parameters and then dividing by three.

Lastly, we measured the time to run the whole system
through 500 frames of video. This in CAVIAR included the
system controller and in Psyclone three control modules to
adjust the dataflow in case of changing conditions.

Task CAVIAR Psyclone
Time to run 500 frames 21 min 3.5 min
Frames per second 0.40 fps 2.38 fps

Table 3. Overall performance comparison.

Summary

We have found that it is very easy to use existing and to
implement new vision modules in both the CAVIAR and
Psyclone frameworks. The main difference between the
two frameworks lies in the runtime control where CAVIAR
chooses a global control approach and Psyclone a fully
distributed control approach. Modules are in both
frameworks created using ones own existing code and
libraries, and then integrated into the system using an
XML-based description of its parameters, the required
inputs and the outputs produced.
Although modules in CAVIAR and Psyclone are created
differently the basic principles are much the same and the
central configuration, as well as the XML-based module
description, makes it easy to test a large number of
approaches to solving different scientific problems.
Each framework has a few features that the other doesn’ t;
none of those features were essential for building the vision
architecture described here.
Besides the solutions being different in the two
architectures, and thus having implications for maintenance
and extensions, the largest difference between the two is in
the runtime efficiency inherent in the frameworks: Psyclone
outperformed CAVIAR. Since Psyclone is intended for
building real-time interactive systems and is available both
in a commercial and a free research configuration, this is
not too surprising. Psyclone also has extensive online
documentation and support. This is likely to factor into the
decision when choosing between the two frameworks. The
CAVIAR website has a number of human-labelled video
sequences available for download.

More information about the two architectures we refer the
reader to the MINDMAKERS.ORG3 and the CAVIAR4
website, which includes a number of human-labeled video
sequences available for download.

Acknowledgement

This research was supported by the CAVIAR project,
funded by the EC's Information Society Technology's
programme project IST 2001 37540. We thank the people
supporting the Mindmakers.org efforts to create open
architectures and standards for research in the areas of
artificial intelligence.

References

R. Adler, Blackboard Systems, in S. C. Shapiro (ed.), The
Encyclopedia of Artificial Intelligence, 2nd ed., 110-116. New
York, NY: Wiley Interscience, 1989.

José Bins, Thor List, Robert B. Fisher and David Tweed, An
Intelligent and Task-independent Controller for Video Sequences
Analysis, accepted for publication to IEEE CAMP05, 2005.

Gary Bradski, The OpenCV Library, Dr. Dobb’s Journal
November 2000, Computer Security, 2000.

M. D. Brown and R. B. Fisher, A Distributed Blackboard System
for Vision Applications, Proc. 1990 British Machine Vision
Association Conf., pp 163-168, Oxford, 1990.

A. A. Cohen, Addressing architecture for brain-like massively
parallel computers, Digital System Design, pp 594 - 597, 2004.

J. L. Crowley, Integration and control of reactive visual
processes, Robotics and Autonomous Systems, vol. 16, pp. 17-27,
1995.

J. L. Crowley and P. Reignier, Dynamic Composition of Process
Federations for Context Aware Perception of Human Activity,
International Conference on Integration of Knowledge Intensive
Multi-Agent Systems, KIMAS'03, 2003.

B. Draper, From Knowledge Bases to Markov Models to PCA,
Workshop on Computer Vision System Control Architectures,
VSCA’03, 2003

R. B. Fisher and A. MacKirdy, Integrating iconic and structured
matching, Proc. 5th Eur. Conf. on Computer Vision, Vol. II, pp
687-698, Freiburg, Germany, June 1998.

A. R. Hanson and E. M. Riseman, The VISIONS Image-
Understanding System, Advances in Computer Vision (Ed. C.
Brown), pp 1-114, 1988.

Thor List, José Bins, Robert B. Fisher and David Tweed, A Plug-
and-Play Architecture for Cognitive Video Stream Analysis,
accepted for publication to IEEE CAMP05, 2005.

3 http://www.mindmakers.org
4 http://homepages.inf.ed.ac.uk/rbf/CAVIAR

Thor List and R. B. Fisher, Computer Vision Markup Language,
Proc. Int. Conf. on Pat. Rec., Cambridge, Vol 1, pp 789-792,
2004.

A. Lux, The Imalab Method for Vision Systems, Machine Vision
and Applications Vol. 16 No. 1, pp 21-26, 2004.

T. Matsuyama and V. Hwang, SIGMA: A Knowledge-Based
Aerial Image Understanding System, New York: Plenum, pp 277-
296, 1990.

N. T. Siebel, Design and Implementation of People Tracking
Algorithms for Visual Surveillance Applications, PhD thesis,
Department of Computer Science, The University of Reading,
Reading, UK, March 2003

K. R. Thórisson, A Mind Model for Communicative Creatures
and Humanoids, International Journal of Applied Artificial
Intelligence, 13(4-5), pp 449-486, 1999.

K. R. Thórisson, H. Benko, A. Arnold, D. Abramov, S. Maskey
and A. Vaseekaran (2004). Constructionist Design Methodology
for Interactive Intelligences. A.I. Magazine, Vol 25, Issue 4, pp
77-90. Menlo Park, CA: American Association for Artificial
Intelligence

K. R. Thórisson, T. List, C. Pennock and J. DiPirro, Whiteboards:
Scheduling Blackboards for Interactive Robots, accepted to the
AAAI-05 Workshop On Modular Construction of Human-Like
Intelligence, AAAI-05, Pittsburgh, PA, July 9-13, 2005a.

K. R. Thórisson, T. List, J. DiPirro and C. Pennock, A
Framework for A.I. Integration, Reykjavik University Department
of Computer Science Technical Report, RUTR-CS05001, 2005b.

K. R. Thórisson, C. Pennock, T. List and J. DiPirro, Artificial
Intelligence in Computer Graphics: A Constructionist Approach,
Computer Graphics Quarterly, Vol 38, Issue 1, pp 26-30, New
York, February 2004.

