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Abstract 

Borrowing ideas from the notion of social construction of 
self, this paper puts forth the idea of synthetic social 
construction - multiagent systems in which agents socially 
construct each others’ roles and behaviors via their 
interactions with one another.  An example implementation 
of synthetic social construction is presented demonstrating 
one use of this method to facilitate behavior akin to social 
learning.  Synthetic social construction represents a novel 
approach to adaptive behavior in multiagent systems 
informed by human behaviors. 

Introduction
     

Multiagent systems have proven themselves a useful tool in 
accomplishing certain types of computational tasks, such as 
bidding in auctions, societal simulations, or control of 
multi-robot systems.  Rather than having a single, unified 
computational entity with which to work, designers can 
now employ many individual autonomous computational 
entities.  While not a panacea, these multiagent systems are 
more adept at solving certain types of problems than their 
single agent counterparts. 
 However, in order to take full advantage of these 
abilities, it may be beneficial to approach these systems 
both as collections of interacting individuals and 
holistically as societies.  By borrowing ideas from 
sociology, anthropology, and philosophy, we can gain new 
insight into different methods and techniques that might be 
used when developing multiagent systems (or societies).  
This type of thought is already evident in other multiagent 
work (López y López, Luck and d'Inverno 2004) (Mao and 
Gratch 2004). 
 One such idea comes from social constructionism 
(Berger and Luckmann 1966): the social construction of 
self.  This theory posits that we determine the proper 
course of action by examining the environment and 
institutions of the world around us, which is defined by the 
actions of other individuals.  When one is the recipient of 
another’s actions, one changes one’s self concept 
depending on what actions were taken; if I am a frequent 
recipient of complements and respect, I may begin to hold 
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myself in higher regard.  When another is the recipient of 
similar actions, one sees one’s self as similar to that other; 
if someone else is also repeatedly complemented and 
respected, I could consider myself similar to him or her.  
When such similarities are in place, one takes one’s cues 
for social action (or inaction) from those that one considers 
to be similar to one’s self.  If the other person who had 
been regularly complemented and respected became 
thankful and humble (or if the other person remained tacitly 
aloof), I might be inclined to have a similar reaction (or 
lack thereof). 
 Such constructionist ideas are in part based on 
precursors from the early twentieth century.  The concept 
of the looking-glass self (Cooley 1902) holds that others 
reflect the self, so that self-concept is defined in terms of 
the views that others hold about the self.  Work done over 
the past century indicates that others’ actual views about 
the self do not have as great an impact on the self-concept 
as one’s perception of others’ views (Tice and Wallace 
2003). 
 Constructionist dialogues have lead to inquiries on the 
nature and reality of the self (Vierkant 2003), sexual 
identity in society (Ponse 1978), discussions of 
constructionism vs. constructivism (Ackermann 2001), and 
examinations of what is actually being constructed in social 
construction (Hacking 1999).  Admittedly, the description 
given here is not a full and complete notion of social 
constructionist theory, nor can such a theory explain the 
entirety of social interaction.  However, the social 
construction of self has useful implications for designers of 
multiagent systems, particularly in regard to agent 
interaction and adaptation. 
 Previously, most adaptive multiagent systems had been 
based on forms of reinforcement learning, memory-based 
reasoning, or model learning (Enembreck and Barthès 
2005).  While these methods have been both formally and 
experientially proven suitable for systems with a single 
agent, they have not been shown to have similar efficacy in 
the learning problem for multiagent systems.  Some of 
these techniques have been modified for use by multiagent 
systems, but generally with some sort of caveat – either 
assumptions must be made about the conditions of the 
environment, agents must be given some a priori 
knowledge, multiple methods must be combined to be 



effective, or, most commonly, formal proof of their validity 
and efficacy has not been shown. 
 This paper presents a method for generating adaptive 
behavior in multiagent systems, synthetic social 
construction, wherein an agent adapts its behavior based on 
both the actions other agents take towards it and the 
interactions other agents have with one another.  This paper 
does not offer a formal proof of the technique’s perfection 
or completeness.  Rather, it presents one example 
implementation in a domain where synthetic social 
construction is particularly pertinent and demonstrates 
results obtained there.  We close with a discussion of 
advantages, limitations, and future work, both of the 
particular implementation and the method in general. 

Related Work 

This work brings together ideas from several other projects 
and synthesizes concepts that span multiple disciplines. 

Social Construction 

Autonomous agents have already been used to simulate a 
number of different social phenomena, including normative 
reasoning (López y López, Luck and d'Inverno 2004), 
social judgment (Mao and Gratch 2004), and others 
(Stirling 2004) (Hales and Edmonds 2003).  Here, we use 
agents to simulate social construction (Berger and 
Luckmann 1966), specifically, a limited notion of the social 
construction of self.  Using the idea that agents in societies 
take their cues from other agents that they see as similar to 
themselves, we enable agents to learn which actions to take 
by observing which actions are taken by similar agents. 

Learning 

Learning, both in AI and autonomous agents, is a well-
known, important, and difficult problem.  Q-learning 
(Watkins and Dayan 1992) is a common, robust technique 
for single agent learning.  Although it has been noted that 
Q-learning is not particularly well-suited for dynamic, 
multiagent environments (Tuyls, Verbeeck and Lenaerts 
2003) (Chalkiadakis and Boutilier 2003), modified 
versions have been adapted to and incorporated in 
multiagent learning (Nunes and Oliveira 2004) (Tuyls, 
Verbeeck and Lenaerts 2003) (Weinberg and Rosenschein 
2004). 
 There has also been other work done on computationally 
generated social learning, specifically in developing robots 
that learn by imitating human actions (Breazeal et al. 
2004).  This work draws largely from theories pertaining to 
infant development and is well suited to developing motor 
skills in conjunction with emotional sensibilities.  Here, 
though, we are not attempting to bootstrap in such social 
understanding from the ground up. 
 Previous work also exists on social learning for multi-
robot systems on a variety of tasks (Mataric 1994) 
(Marsella et al. 2001).  Although this learning is informed 
by biological and psychological ideas of social learning, 

these systems are also based on using some sort of fitness 
evaluation, which is not the case in social construction. 
 Various other methods have been developed, besides 
reinforcement learning, including memory-based reasoning 
and model learning.  However, as noted elsewhere 
(Enembreck and Barthès 2005), many of these techniques 
do not adapt readily or easily to multiagent systems. 
 Furthermore, the adaptations of this system are not made 
with the goal of reaching an optimal solution, but rather 
with the goal of acting in a socially acceptable manner, 
where what is socially acceptable is determined by the 
actions of conspecifics.  The situation could be seen such 
that acting in perfect social alignment would be an optimal 
solution.  However such socially defined constraints are a 
moving target requiring constant adjustment, and, at least 
in the humans on which this behavior is based, “totally 
successful socialization is anthropologically impossible” 
(Berger and Luckmann 1966, p. 150). 

Coalitions 

Another societal phenomenon that has been incorporated 
into multiagent systems is the forming of subgroups, or 
coalitions, within a society (Sherory and Kraus 1995) 
(Griffiths and Luck 2003).  Most of these coalitions are 
goal-based, that is, agents form and join coalitions to better 
accomplish their own goals.  While the coalitions are 
formed, agents explicitly work together to accomplish a 
temporarily unified goal. 
 While synthetic social construction forms subgroups 
within societies of autonomous agents, such groups are not 
formed to facilitate the accomplishment of a specific task.  
Furthermore, the agents do not pool their collective skills 
to achieve a previously unattainable goal.  Rather, the 
groups formed here are made for the purposes of learning.  
While learning could be seen as a goal, it is a different sort 
of goal than those typical of coalitions, in that it is not at 
some point accomplished and then checked off so the next 
goal can be addressed. 

Characters 

The specific implementation discussed in this paper builds 
on work done with autonomous characters by a number of 
different researchers and groups (Tomlinson et al. 2005) 
(Tomlinson et al. 2001).  While this paper does not bear 
relevance specifically or only to autonomous characters, 
the system discussed below was implemented on a platform 
based on other characters research. 

Synthetic Social Construction 

This paper presents the idea of Synthetic Social 
Construction, a method with which agents learn action 
selection by observing the choices made by other agents.  
Part of the notion of the social construction of self says that 
one takes cues on how to act from others to which one sees 
oneself as similar.  When such a similar person takes or 



does not take an action, one is more or less inclined to take 
that action as well, respectively. 

Similarity 

Individuals participating in social construction determine 
from whom to take their cues for proper actions in a variety 
of ways, including the authority of the other person, social 
and emotional relationship of the other person to the 
individual, and the individual’s current stage in his or her 
development (Berger and Luckmann 1966).  In social 
learning, similar criteria are combined with some sort of 
competence or optimality evaluation, such as determining if 
the other person achieved their goal or if the outcome of 
their actions is a desired outcome for the individual in 
question.  Such methods have been implemented 
successfully elsewhere (Breazeal et al. 2004), but optimal 
learning is not the purpose for this method.  Social 
construction says that “actions of type X will be performed 
by actors of type X” (Berger and Luckmann 1966, p. 51-
52), with no comment as to whether actors of type X are 
the most fit to perform actions of type X.  An individual 
determines what types of other actors take what types of 
actions, determines which type of actor he or she is most 
like, and then takes the appropriate actions. 
 In order for an agent to determine from whom to take its 
social cues (which type of other agent it is most like), this 
method requires that the agent have a means of measuring 
its similarity to other agents.  We provide a similarity 
metric that differs from Euclidean distance, “city block” 
distance, Hamming distance, or other such metrics.  We do 
not use these other metrics because they give the same 
distance regardless of the magnitude of the values.  For 
example, Euclidean distance says that the point (10, 10) is 
just as far away from the point (20, 20) as the point (110, 
110) is from (120, 120).  However, we wanted to be able to 
take range into account.  That is, while the exact distance 
between these two points is the same, the proportions 
between the actual values are quite different.  To capture 
this idea, we use a similarity metric that bases similarity not 
only on the difference between values but also on their 
difference with respect to their magnitudes. 
 Let us consider two agents, x and y, with various 
properties p1, … pn, which, for measuring similarity, we 
call dimensions.  We use the notation x.pi to refer to x’s i

th
 

property pi.  These properties can be of two kinds: discrete 
or continuous.  We now define a similarity function s(j, k) 
to compare any two agents in a single dimension. 
 For discrete properties, either the agents have the same 
value or they do not.  For example, a person could be a 
homeowner or not be a homeowner, but there is not a 
continuum of partial homeownership such that one person 
could own more of a home than another person.  For such 
properties, if x.pi = y.pi, then x and y are similar in that 
dimension, and s(x.pi, y.pi) = 1.  Otherwise, they are 
different, and s(x.pi, y.pi) = 0.  This maintains the identity 
property for metrics. 
 Continuous properties are values in some range and can 
be more or less similar depending on their position in that 

range.  For example, a person who is 1.75m tall would be 
more similar to another person who is 1.8m tall than one 
who is 2m tall.  For such properties, the similarity in that 
dimension is given by the formula: 

where s(x.pi, y.pi) is the similarity x bears to y in dimension 
pi.  Note that s(x.pi, y.pi) = s(y.pi, x.pi), which is significant 
for two reasons.  One, when comparing x and y, we only 
have to do one calculation, rather than needing one 
calculation for x’s similarity to y and a separate calculation 
for y’s similarity to x.  Granted, the calculation involved 
here is not incredibly demanding and in all reality will most 
likely not give a huge performance boost.  However, in 
real-time systems, one common application area for 
autonomous agents, often times every little performance 
boost makes a difference, especially when dealing with 
very large numbers of agents.  More importantly, though, 
this equality maintains the symmetry property for metrics. 
 We also trap the similarity for any given dimension in 
the range 0.0 – 1.0.  s(j, k) has a maximum value of 1 
(when j = k), so the only real trapping is done if s(j, k) 
comes out negative.  If agents x and y are vastly dissimilar 
in some dimension, we do not want that dissimilarity to 
detract from similarities in other dimensions.  So, if s(j, k) 
comes out negative, rather than keep the negative value we 
simply replace it with 0.  This trapping means that we may 
not maintain the triangle inequality for metrics.  However, 
as discussed elsewhere (Santini and Jain 1995) (Finnie and 
Sun 2002), the triangle inequality does not and should not 
always apply to similarity metrics. 
 Note that there are two situations in which the average, 
and thus the denominator, may be 0, causing the value to be 
undefined.  First, if both x.pi and y.pi are 0, then the 
average will obviously be 0.  Here, we introduce a special 
case to return a similarity of 1, since the two have the exact 
same value.  Second, if x.pi = -1 * y.pi, then the average 
here, too, will be 0.  Since we are using a similarity metric 
that bases similarity partially on magnitude and in this case 
x and y have exactly the opposite magnitude in the 
dimension in question, we say that they have absolutely no 
similarity in that dimension and return a similarity of 0. 
 Now we define a similarity function S(x, y) to compare 
two agents across all dimensions as given by the formula: 

where S(x, y) is the overall similarity of x and y across all 
dimensions. 
 This similarity metric requires that all the agents in a 
system are of the same basic type, or at least 
morphologically similar enough to make comparisons.  
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Adaptations that could be made in such systems are 
discussed below in the section on limitations. 

Simple Learning 

This method allows one agent to learn from other agents 
based on those agents’ decisions.  However, the initial 
learning done by those must be based on some sort of 
reasonable course of action.  Otherwise, an agent will base 
its actions on the arbitrary decisions of others rather than 
on decisions informed by those others’ experiences.  This, 
this method can only be used in conjunction with some 
other learning algorithm. 
 The most intuitively applicable methods are 
reinforcement learning and memory-based reasoning.  In 
reinforcement learning, the agent receives some sort of 
feedback after a given decision that makes the agent more 
or less inclined to make the same decision again.  When 
that time comes, another agent can simply observe the first 
agent’s decision and then adapt its behavior accordingly. 
 The case of memory-based reasoning is somewhat 
similar.  When an individual agent makes a decision based 
on its memories, it can update those memories with the 
result of the present decision and store that information for 
future decision making.  Likewise, when one agent watches 
another agent make a decision, the first agent can update its 
memories almost as if it had made the same decision. 
 Model learning, however, does not apply as easily.  It is 
difficult for one agent to determine if another agent’s 
model is similar to its own and if even makes sense to 
update its model based on the other agent’s actions.  That is 
not to say that model learning could in no way be used 
here, but rather that other learning methods are more 
amenable. 
 Once one agent has learned from its actions and adjusts 
its decisions accordingly, it becomes possible for other 
agents to observe these decisions and adapt their behavior 
to reflect the new decisions. 

Social Learning 

Based on the similarity metric described above, each agent 
keeps a record of how similar it is to another agent.  When 
one agent observes another agent take or not take an action 
about which it cares, the agent in question then modifies its 
likelihood of taking a similar action based on the degree of 
similarity to that other agent. 
 Thus for an agent x, its tendency to take a certain action 
at some future time, Tn + 1, after observing some action of 
agent y is given by the formula: 

where dy is the decision of the agent y (1 is performing the 
action and 0 is not), Tn is agent x’s current tendency to take 
the given action, and S(x, y) is x’s similarity to y, as 
defined above. 
 There are two important aspects of this approach to note.  
One is that agent x’s tendency approaches agent y’s action 

asymptotically; x’s modifies it’s tendency by half the 
difference between its tendency and y’s action.  Second is 
that the tendency adjustment is multiplied by the agents’ 
similarity, which is on a scale of 0.0 to 1.0.  The greater the 
similarity between two agents, the greater the influence one 
will have on the other. 
 It is important to remember that this method of learning 
does not attempt to converge over time, or even attempt to 
reach an optimal value.  Rather, the purpose is an attempt 
at emulating some of the ways that humans perform social 
construction.  Thus, the paper contains no proof or 
mathematical demonstration of this method’s optimality. 

Implementation 

Currently, work is being done on implementing synthetic 
social construction in the Virtual Raft Project (Tomlinson 
et al. 2005).  The following section presents the portions of 
that implementation that have been completed thus far. 

The Virtual Raft Project 

The Virtual Raft Project centers on a mobile computing 
interaction paradigm in which stationary computers are 
islands of virtual space and mobile devices are rafts by 
which autonomous systems may cross the sea of real space 
that separates virtual islands.  To emphasize this metaphor, 
the mainstay of the installation consists of three collocated 
desktop machines on each of which a group of virtual 
characters live.  Tablet PC’s act as virtual rafts, which users 
can physically bring up to one of the islands to allow a 
character to jump off of the island and onto the raft.  If the 
raft is then brought to another island, the character will 
jump off onto that island.  For a better sense of the system 
and the interactions involved, please see the video at 
http://tinyurl.com/5yxkn. 

To Jump or Not to Jump 

The main decision these characters are faced with is 
whether or not they will be jumping onto or off of the raft.  
Initially, the characters would jump whenever a raft or 
island was present.  The tablet PC’s that serve as virtual 
rafts incorporate accelerometers, which allow the attitude 
of the tablet to affect the movement of the raft on the 
tablet’s screen, such that tilting the tablet in one direction 
causes the raft to move in that same direction.  If the raft is 
tilted too far, the character falls in the water and its fire 
goes out.  When the raft moves around, the character 
attempts to balance on the raft, all the while making a 
record of how long it was on the raft and how rough the 
ride was, the later codified by the amount of sliding around 
the raft does and labeled as the distance the raft traveled.  
We wanted the characters to form impressions about 
whether traveling on the raft is a good or bad thing, 
depending on how their trip went.  This could be 
accomplished with a simple reinforcement learning system.  
However, once the characters arrived on a new island, we 
wanted them to pass those impressions on to other 
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characters.  In this way, different characters could share 
their different ideas about the raft and collectively get much 
more diverse sample than would be possible individually. 
 When a character is first created, we start it off with a 
100% likelihood of jumping onto the raft.  This is partly 
because if the characters did not start off jumping then the 
installation would not be incredibly engaging, and partly 
because if the characters did not jump to begin with people 
would likely assume the behavior was a malfunction rather 
than a designed behavior. 
 Once a character has ridden the raft and then disembarks, 
it adjusts its likelihood to board the raft again based on the 
quality of the trip.  This implementation uses a simple 
reinforcement learning strategy based on the amount of 
time spent on the raft, how far the raft traveled, and 
whether the character fell in the water.  After a trip on the 
raft, the agent’s new jump tendency is given by the 
formula: 

where Jn + 1 is the new jump tendency, Jn is the previous 
jump tendency, d is the distance traveled on the raft, t is the 
time spent on the raft, and f is 1 if the character fell off the 
raft and 0 if not. 
 While on the island, the characters observe one another, 
and each determines its similarity with respect to the others 
using the similarity metric described above.  Since humans 
compare themselves to one another using a variety of 
dimensions, “such as physical appearance, abilities, and 
personal wealth” (Wood and Wilson 2003), we also chose 
a variety of dimensions on which for the characters to 
compare themselves to each other. 
 The current implementation uses five dimensions.  Birth 
island is readily visible as part of the character’s physical 
appearance in the color of its crown and signifies a sort of 
ethnic origin, so we use it as one dimension.  For the 
purposes of comparison, island of origin is treated as a 
discrete value; we do not say that certain islands are closer 
to others.  Whether or not a character’s fire is lit is also an 
obvious component of physical appearance and is factored 
into similarity as a discrete value.  What color fire the 
character is carrying, partly a component of physical 
appearance, can only be known if it has a fire and thus is 
only factored into the similarity metric if both of the 
characters in question have their respective fires lit.  In this 
case, fire color is treated as a continuous value, since 
during the course of the installation the characters can mix 
fire colors, leading to fire color as a partial indication of the 
character’s history.  Fire color is stored as an RGB value, 
so the overall similarity in this dimension is the composite 
of the similarities of the red, green, and blue components of 
each character’s fire color.  While sitting around the central 
fire on an island, the characters take turns “telling stories” 
to one another by passing information about the duration 
and quality of their trip, which is signified visually by one 

of the characters standing up, gesturing as if speaking, and 
optionally (depending on the installation) verbally, audibly 
describing their trip to the other characters.  Thus, it makes 
sense that characters would compare themselves to each 
other based on trip duration and quality, both because this 
information is readily available to all characters and 
because it indicates another aspect of a character’s history 
which may resemble or differ from others’ histories.  Both 
trip duration and quality are treated as continuous values 
for the purposes of the similarity metric. 
 As a visual signification of similarity, the characters tend 
to “hang out” near other characters to which they are 
similar.  Characters are most drawn to others to which they 
are most similar and are most repelled from those to which 
they are most dissimilar.  This makes it apparent to the user 
that various groups are being formed within the population 
on an island. 
 The learning is actually done when a user brings a raft up 
to an island.  When the raft approaches, all the characters 
on the island turn around and take notice of the raft’s 
presence.  Each character then decides for itself whether it 
is interested in jumping on the raft or not, based on a 
pseudorandom number compared to its jumping tendency.  
If it is in fact interested, the character will visually signify 
this interest by approaching the foreground of the screen.  
If it decides it would rather not jump, the character turns 
back around and sits down again at the fire.  When this 
decision occurs, each character observes the other 
characters’ decisions and modifies their own jump 
tendency using the social learning formula described 
above. 

Discussion 

Here, we list some of the benefits of synthetic social 
construction, address some of its limitations, mention some 
possible future directions, and list a few questions that 
could be addressed in this workshop.  Throughout, we 
mention aspects that were particular to this implementation. 

Benefits 

Collective Learning.  As mentioned at the beginning of 
this paper, the learning problem for multiagent systems is 
an important and difficult one.  Synthetic social 
construction offers a novel approach to multiagent learning 
that takes advantage of different agents having different 
experiences.  Rather than restricting an agent to learning 
from its own experience, this method allows the agent to 
learn behavior from others’ experiences by watching their 
decisions.  An agent cannot watch another agent make a 
decision, observe the outcome, and decide if it would make 
the same decision.  Rather, the first agent lets the other 
agent determine whether the course of action was a 
beneficial one, observes the other agent modify its decision 
patterns, and then adapts its own decisions based on those 
modifications. 

( )f

td
JJ nn

*1.01.0

25.0
10

25.025.0
20

25.01

−+









++








++=

+



Character Believability.  When the Virtual Raft Project 
began, enhancing character believability was a core 
concept.  By allowing characters to break the screen, the 
characters are no longer seen as entities that live only 
within a single device but as entities that maintain 
permanence across several stationary and mobile devices.  
When a character maintains this permanence, it becomes 
less like a part of a computer program bound to one 
machine and more like a truly autonomous character. 

Social Simulation.  Simulating artificial societies has 
become an important area of research, as evidenced by, 
among other things, an entire journal devoted to the 
subject, the Journal of Artificial Societies and Social 
Simulation.  If such pursuits are truly intended to imitate 
human societies, it might be beneficial to incorporate 
mechanism similar to those theorized to be in place in 
humans.  Furthermore, behaviors that emerge from such 
synthetic societies may be able to help us understand the 
human behavior after which it was modeled and help 
inform new lines of questioning and new areas of research. 

Uncertainty Handling.  As stated above, social 
construction dictates that individuals do not choose whom 
to act like based on competence or optimal performance.  
In some applications, there may be an uncertain, unclear, or 
fluctuating definition of optimality; such optimality may 
not exist at all; or agents may not be intended to find an 
optimal course of action.  In these situations, learning from 
other agents may become a distinctive advantage. 

Limitations 

Not Optimal.  Not searching for an optimal solution may 
also be a weakness, depending on the application.  This 
learning method does not seek any optimal solution or 
equilibrium (at least, not explicitly).  For some 
applications, agents should be finding the best solution 
possible.  In such applications, a competence or optimality 
measure should be used in place of a similarity metric when 
determining from whom to learn, or possibly another, 
specifically adapted method altogether.  However, this 
method is better suited for applications where agents 
should be exhibiting social interactions rather than 
accomplishing some task. 

Homogeneity.  For the similarity metrics to work the 
agents have to be homogeneous, otherwise they won’t 
know how to compare to one another.  Developing some 
sort of basic, common properties along which all agents 
could compare themselves with one another despite 
differences in morphology represents one possible solution, 
with more specific dimensions possibly available for agents 
of more similar types.  If the agents are not homogenous, it 
does not rule out the use of some similarity metric, but it 
does make the development of such a metric more 
complex. 

Scalability.  As the number of agents increases, scalability 
quickly becomes a pressing issue.  If the number of agents 

is n, it takes O(n
2
) time to compare every agent to every 

other agent. 
 Implementation described here includes an optimization 
that removes the need to run an O(n

2
) process to constantly 

update character similarities.  Rather than comparing every 
character to every other character at every time step, the 
characters have a simple tracking that stores a previous 
value for each of the dimensions of interest.  At every time 
step, the current value is compared against the previous 
value.  If anything has changed, all the similarities for that 
character are recalculated, which takes O(n) time, where n 
is the number of agents.  This is far better than an O(n

2
) 

process every time step, but it does require O(n * m) extra 
memory, where m is the number of dimensions being used 
for similarity testing.  This is a useful optimization, but 
ultimately it may prove as a weakness in this method since 
not every implementation will have so few dimensions or 
be able to take advantage of dimensions that are not 
constantly in flux. 

Simple Learning.  Despite the ability to learn from other 
agents, this method still requires that some agent learn for 
itself first, either by reinforcement learning as in the 
implementation described here or by some other method.  
Once one agent has learned something, it can demonstrate 
that knowledge to other agents, but it must learn 
experientially on its own to begin with. 

Future Work 

Experience-based Similarity.  Currently, the agents use 
various physical properties in conjunction with experiences 
with the raft to determine similarity.  Ultimately, parts of 
social construction deal with the actions one agent takes 
directly towards another, of which there currently are none.  
Giving the agents some way directly interacting with one 
another, possibly by selectively choosing to talk or not talk 
about their experiences on the raft or by trading fire colors 
to form a collection, would make for much richer social 
interaction. 

Jump Off.  Currently, the characters are only concerned 
with whether or not to jump on the raft; when presented 
with an island onto which to jump, they will always jump 
off the raft.  This could be improved by allowing the agents 
to gather simple data about an island, such as the average 
similarity of the characters or some information about the 
norms on that island (López y López, Luck and d'Inverno 
2004), and then making a decision as to whether or not that 
was an island onto which they wanted to jump. 

Vicarious Learning.  Rather than one agent relying on 
another agent to learn something and then having the first 
agent just watch what the second agent does, the first agent 
should be able to watch the second agent’s actions and 
determine for itself whether the results are desirable.  This 
sort of modification might get back to something like 
(Tuyls, Verbeeck and Lenaerts 2003), where they use a 
type of Q-learning modified for agents. 



Trust.  After one agent has observed another and learned 
something from it, the agent could analyze the benefit of 
learning from that other agents and possibly establish a 
degree of trust between them that would augment or 
mitigate further learning. 

Permanence and Habituation.  Social constructionism 
incorporates the idea of primary socialization, which occurs 
comes mostly from an individual’s parents, as stronger and 
more permanent than secondary socialization, which comes 
from other authority figures and institutions encountered 
later in life (Berger and Luckmann 1966).  Once an agent 
has had an initial impression made by watching other 
agents from its own island do the same task a hundred 
times, that learning should be incredibly ingrained so that if 
the another agent suddenly does something different, the 
first does not necessarily modify its behavior immediately 
to follow suit.  Alternatively, once one agent has watched 
another agent do the same task a hundred times, the agent 
may have become habituated to that particular stimulus and 
so it no longer has any effect on the agent. 

Questions 

There are a number of questions this work has raised that 
could possibly be addressed in this workshop. 
 Currently, the system still relies on a very simple 
reinforcement learning method.  Would there be a way to 
make the learning entirely social?  One possibility in this 
implementation would be to assign all the characters 
random initial jump tendencies and allow whatever order 
happens to emerge.  However, there would still be no link 
between the raft trip and the characters’ decisions.  Does it 
even make sense to try and remove reinforcement or some 
other simple learning? 
 A large part of social construction deals with how 
individuals act toward each other, but currently the 
characters in the Virtual Raft Project do not take any 
actions directly toward one another.  What sorts of actions 
and interactions might make sense?  Should they trade?  
Should they fight (one participant at CHI moved all the 
characters to one island and then wanted a Battle Royale to 
ensue)?  Should they have tea?  Should they just chat? 
 Is there a way to overcome the scalability problems of 
comparing every agent with every other one?  There are 
classical logic puzzles about passing information among 
parties, but in this case, the information each agent has is 
calculated and only pertinent to that agent.  Could there be 
some way to work around this? 
 What else could we do with synthetic social 
construction, other than learning?  Could we use it for 
coalition forming?  Can we use it for construction of 
concepts other than self, such as emotion, social roles, or 
possibly, rather than mimicking other agents, allow agents 
to mimic humans with which they interact? 

Conclusion 

This paper has presented synthetic social construction, a 
method for an agent in a multiagent system to adapt its 
behavior based on the behavior of other agents.  The 
specifics of one initial implementation in the Virtual Raft 
Project were described, along with some benefits and 
limitations of the approach.  Admittedly, having 
autonomous characters decide whether on not to jump on 
or off a virtual raft seems relatively simple in the scope of 
possible social behavior.  However, applying the basic 
concepts from this implementation to other systems may 
have the potential to create complex, compelling, and 
useful behavior.  Synthetic social construction offers a 
novel approach to multiagent learning, social simulation, 
and decision-making in multiagent systems. 
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