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Abstract

We have developed an approach for commonsense reason-
ing using knowledge collected from volunteers over the web.
This knowledge is collected in natural language, and includes
information such as task instructions, locations of objects in
homes, causes and effects, and uses of objects in the home.
This knowledge stored in tables in a relational database is
filtered using statistical methods and rule-based inference.
Missing details within natural language task instructions are
reasoned to determine the steps to be executed in the task.
These missing details are handled by meta-rules which work
across the knowledge categories and interact with the appro-
priate tables to extract the right information. Our reasoning
approach is illustrated for common household tasks.

Introduction

Since the work of McCarthy (McCarthy 1959), common-
sense reasoning has been widely investigated with formal
treatment of logic. Formal representations involve a vari-
ety of operator definitions, depending upon the type of logic
(e.g. epistemic, modal). Operator evaluations can be embed-
ded within inference rules to generate facts that drive further
evaluations. However most real-world problems, require de-
feasible reasoning, e.g. non-monotonicity (Zernik 1988).

Formal representations for commonsense require many
axioms to represent even the most basic household tasks.
From an implementation standpoint, a knowledgebase com-
prised of a collection of such axioms will hold little advan-
tage over other forms of programming unless the axioms are
broadly applicable among tasks. This is difficult to achieve
and contradictions arise as the knowledgebase is scaled to
larger sizes. Tracking which axioms to use for a given prob-
lem statement then becomes difficult.

On top of this difficulty, a dynamic world represented
within knowledgebases introduces conflicting information
over time that may need to be retracted. One method for
maintaining psuedo-monotonicity in the face of a dynamic
world relies upon the tagging of all information with a times-
tamp (Elgot-Drapkin & Perlis 1990). Such schemes can be
used to identify conflicts however they typically do not per-
form well for real-time applications. Various maintenance
rules for nonmonotonicity have been explored over the years
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to handle the various difficulties associated with change and
scalability (Minker 1991).

As an alternative to formal methods that guarantee solu-
tions, implementational approaches place more emphasis on
adaptation and knowledge acquisition. Studies involving hu-
man interactions and natural language, for example, have
shown promise in developing agents that can learn and rea-
son about human-centric information (W. L. Johnson 2004).
According to Rasmussen et al (1983), human behavior in fa-
miliar environments doesn’t require extensive decision mak-
ing. It is controlled by a set of rules or steps which have
proven successful previously. The sequence of steps may
have been derived empirically in the past or communicated
from another person’s know-how as instructions.

A variety of knowledge sources and knowledge represen-
tations have been proposed for such approaches. Knowledge
bases such as CYC (Guha et al. 1990) have been manu-
ally developed. Their rule base utilizes domain heuristics
and is manually designed. OpenMind projects (Stork 1999;
2000) have been developed to capture information provided
by the public in natural-language form. Applications such
as a hypermedia authoring agent have been developed with
OpenMind knowledge (Lieberman & Liu 2002).

Implementation of logic takes many different forms, as
reflected in the base languages and systems that have been
developed over the years. Traditional logic programming
languages such as Prolog (Colmerauer 1990) favor the use
of backward chaining for applications that involve, for ex-
ample, planning or theorem proving. CLIPS (Giarratono &
Riley 1998) is optimized for production systems (forward
chaining). A situational calculus within GOLOG (Levesque
et al. 1997) or fluent calculus within FLUX (Thielscher
2002) facilitate planning in dynamic environments. Sys-
tems built upon semantic networks such as SNEPS (Shapiro
& Rapaport 1987) provide a suite of powerful search tech-
niques on semi-structured knowledge to support belief revi-
sion with natural language text. Finally, modules such as
memory chunking in SOAR (Rosenbloom & Laird 1990)
provide a method to implement reflective introspection.

Considerations for choosing an appropriate reasoning
paradigm include the knowledge acquisition method, scal-
ability, knowledge representation, and known uncertainties
that the system might encounter. In this paper, it is assumed
that a user requests the robot to carry out a household task



such as making coffee or washing clothes. For this kind
of knowledge we bind task instructions (e.g. change fil-
ter) from the user to explicit action-object-state assignments
via class rules and meta-rules. Such assignments can then
be executed by the robot hardware to accomplish the task.
OpenMind Indoor Common Sense (OMICS) data (Gupta &
Kochenderfer 2004) is used as a source for the task instruc-
tions. The various categories of collected data are discussed
in the section on Knowledge Capture.

We then discuss how class rules process distributed
knowledge using symbolic techniques. Statistical methods
are used to filter out variations in word choice and sentence
structure. However in this paper, it will be assumed that ei-
ther a single user’s instructions are being used, or a com-
posite set of available choices are available. We use the
processed OpenMind knowledge with manually designed
meta-rules to fill in missing information for household tasks.
These class and meta-rules are illustrated with the task of
making coffee. The system implementation is described in
the following section on the integration of knowledge, mem-
ory and rules. This is followed by Conclusions and Future
Work.

Our long-term goal is to implement this approach in
robots that interact with humans to help them perform com-
mon household tasks. Task steps may be communicated ex-
plicitly to a robot. However typical instructions will rely
upon implied understanding and provide sketchy details.
The robot will need to use commonsense principles to seek
the details in real time to perform these tasks.

Knowledge Capture

Research on distributed knowledge capture methods is
growing in popularity due to concepts such as the Seman-
tic Web. There is vast amount of internet information avail-
able, however contextual analysis of natural language state-
ments still represents a holy grail for Al research. To ad-
dress this challenge, OpenMind projects worldwide collect
knowledge in a structured format with contextual informa-
tion. The goal of the OpenMind Indoor Common Sense
(OMICS) ! project is to develop a relational database of in-
door home and office knowledge from volunteers (netizens)
over the web. The database table entries are created from
responses to fill-in-the-blank prompts generated by seed ta-
bles that contain information related to common household
items and tasks. These prompts help to preserve context un-
derstanding by enforcing structural relationships within the
OpenMind schema. Such relations are interpreted for a vari-
ety of reasoning scenarios including causes-and-effects, task
execution, and the determination of relationships among ob-
jects.

As an example of the information captured in the SQL
knowledgebase, netizens are asked to enter the steps to ac-
complish a particular task. These statements contain refer-
ences to specific actions associated with the task. For exam-
ple, steps in the task of making coffee entered by a typical
user are:
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<change the filter in the coffeemakers>
<add ground coffee onto the filters
<pour water into coffeemaker top>
<turn on the coffeemakers.

Other relational tables we have used from OMICS include
Locations, Uses, and Causes. The Locations activity asso-
ciates objects with the rooms where they are typically found.
For example, the user might be prompted with, ‘A room
where you generally find a dinner table is the . The
Uses activity associates objects with their uses. For exam-
ple, the user might be prompted with the form, ‘A hanger is
used to ’

The Causes activity captures causality. An example of the
Causes data is “When the tap is on, the sink becomes full.’
These are stored as pairs of object properties, the first being
the cause and the second being the effect.

In general, natural language phrases are parsed and stored
in appropriately tagged fields in a SQL database with dif-
ferent tables mapping to different relations. The OMICS
knowledge base is also the source for the grammars, object
states and action descriptions. Such knowledge representa-
tion is relatively self-contained, and can be augmented with
natural language statements by interactions with humans.

Processing Distributed Knowledge with Class
Rules

Our approach towards reasoning is implementation-based
with constraints expressed in SQL queries and pattern recog-
nition implemented with regular expressions. Raw text task
instructions captured in OMICS must be processed using a
Penn Treebank parser (Klein & Manning 2001). Interpre-
tation of parses is performed via class-rules, i.e. rules spe-
cific to grammatical constructs and knowledge content (such
as action references). The class rules work effectively as
filters— requiring specific, unique relationships to be stated
in order for logic to construct facts for processing.

Our discussion of class rules is illustrated with common-
sense reasoning as it applies to the coffee-making task. To
begin with, the database is queried whenever a request for
a task is identified. Other causes, such as observances of
change-of-state variables tied to certain behaviors of the
robot could also have initiated the query. Given a set of
natural-language instructions, the first class rule triggered
involves the extraction of action-object-state information
from each given step using regular expressions. Such infor-
mation serves as parameters for closed-loop feedback and
control mechanisms (CLFC) in the robot. The extracted
action-object-state information for the coffee-making task
discussed in the section on knowledge capture is:

<change, filter, in coffeemakers>
<add, ground coffee, onto filters
<pour, water, into coffeemaker tops>
<turn on, switchs>.

Class rules are also utilized for finding the likely location
of objects. There are tables in OMICS that represent typ-
ical object locations in a home. Such information gathered



from netizens cannot be specific to an actual home. The neti-
zen responses, however, may suggest that a couch is located
in multiple places such as the living room, family room, or
den. Thus, upon arriving at a new home, the robot will have
a common sense notion as to where household objects are
likely to be located. Over time, such knowledge is replaced
by actual observations.

A class rule that performs verb tense search and replace-
ment is typically triggered as well. This might be used to
provide feedback to the user about the robot’s current state
and actions as well as target specific robot functionality.
Task steps in OMICS typically contains the present tense
of a verb. Most verbs follow the same rule for converting to
past or present participle tenses (adding “ed”, “ing”). How-
ever there are exceptions such as the word make: (make,
made, making). These exceptions are stored in a look-up
table (provided by WordNet) associated with the rules. For
converting verb references to present tense form, we first
check for exceptions and then apply the rule to extract the
proper tense of the verb.

Other grammar rules involve synonym search and re-
placement to match verbs and objects to those verbs and ob-
jects explicitly referenced in logic. An example verb is the
word change. Other synonyms for change include replace
and alter. These synonyms are extracted from the lexical
utility Sentry Thesaurus from WinterTree Software. Once
replacement candidates are identified, a user’s utterance can
be translated into a form that is more likely to trigger further
processing within the robot’s fact/rule knowledgebase.

Finally, class rules are used to find CLFC processes for
natural language statements that ultimately do not bind to a
known CLFC process. For example, if the robot does not
know how to fill a glass with water, the action-object-state
(fill-glass-with water) can be processed further using facts
associated with the individual object references, actions, and
states to find appropriate CLFC processes. A description of
this process is provided in the next section.

Using Commonsense Rules to Seek Missing
Details

In addition to class rules that are specific to knowledge
structures, rules are needed that are independent of specific
classes, to seek missing details. In general, commonsense
meta-rules are triggered to ensure that a robot (and environ-
ment) are properly configured to carry out a task by calling
multiple class rules to extract missing pieces of information.
Figure 1 illustrates the interaction between meta-rules, class
rules and the knowledge base.

The class rules are designed to format information for
commonsense processing. Such processing is triggered in
response to speech events or new observations. For exam-
ple, a user speech request event is expressed as a multi-field
collection of data consisting of the context (e.g. request),
and specific task reference (e.g. make coffee). In response,
the meta-reasoner looks up the list of instructions for the
task and sends them to a task sequencer rule in a reasoning
thread for further processing. The task sequencer processes
each instruction one at a time, waiting for a fact to be trig-
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Figure 1: Schema showing interaction between meta-rules,
class rules and the knowledge base.

gered to release the execution of the next task instruction.

Figure 2 illustrates the knowledge used in the interactions
between meta-rules and class rules for responding to a re-
quest to make coffee. As each task instruction is extracted, it
is processed according to the methods described in the pre-
vious section. We now illustrate the processing that must
take place to extract additional details for the example task
of making coffee. With the first instruction,

<change the filter in the coffeemakers

a complete action-object-state description is recognized. At
this point the robot is prepared to perform an action on ob-
jects it recognizes, however it must use commonsense rules
to interact with these objects. Whenever a direct object is
referenced, a query is triggered to locate the object in the
Locations table. Whenever an action request is made, an
implicit self-reference is assumed, hence another query is
triggered to locate the robot.

By invoking the class rule for locations, the filter is found
to be in the kitchen. Hence, the robot will first choose to
act upon the filter in the kitchen. It would be better if the
robot had an understanding that change is an action that is
only performed on used filters, and that a filter box contains
only new filters, however such information will not always
be present. As part of commonsense processing, in prin-
ciple, a consistency check can be performed to verify the
causes and effects associated with a given action to notice
such rules.

Then a map algorithm instantiates a chain of responses
to the chain of object references generated by the previous
queries to navigate the robot to the desired location. This
navigation is performed via a series of commands to the
meta-reasoner to oversee the operation of the relevant com-
ponents of the robot (e.g. legs). For example, the following
command will be generated in response to the comparison
between the robot’s location (living room) and the filter’s
inherited location (in the kitchen):

<go to the kitchens.

Upon binding the action ’go” to a legs routine “walk”, the
robot will initiate a navigation routine to the desired object
reference. Upon arriving at the kitchen, a completion fact is
initiated which restarts the visual check to determine where
the direct object is located. The same cycle of rules are ex-
ecuted until the robot is eventually proximate to the direct
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Figure 2: Knowledge used and interaction between meta-
rules and class rules for a coffee making task.

object location. At this point, a command is sent to the meta-
reasoner, requesting that the action take place. In our work,
a simulator is used in place of a CLFC process to carry out
the actions. When the execution cycle is finished, a comple-
tion fact is instantiated which triggers the processing of the
next task instruction in the queue.

Another use of commonsense meta-rules involves han-
dling action-object-state facts that the robot does not know
how to execute. As discussed in the previous section, a
search of its knowledgebase is required in order to decom-
pose the action-object-state reference into known CLFC pro-
cesses. In traditional logic, many axioms are typically re-
quired to express the proper relationships between objects in
order to constrain the possible behaviors that the robot can
perform. An example of such a pair could be the following
step from the make coffee example:

<pour, water, into coffeemaker top>.

If the robot does not know how to pour water, the ac-
tion object pair (pour, water) can be processed further us-
ing reasoning concerning the interactions between objects
and their states (cause-and-effect) to find an alternate way to
achieve the same effect. Class rules match the effected ob-
ject and property to all entries in the knowledge base to find
a possible cause, e.g. (tilt, water bottle). Alternative sources
of water, or the implicitly referenced container for pouring
can be determined by chaining together multiple cause and
effects. This information is extracted from OMICS using
meta-rules and parsed into a look-up table for assembling a
set of action-object pairs to accomplish the step. This may
return an alternate action-object pair to achieve the same re-
sult, that the robot may know how to execute:

<tilt, water bottle>

System Implementation

The reasoning engine we used for our study was developed
in Java and JESS provided by Sandia National Laborato-
ries (Friedman-Hill 2004). The core of the system is imple-
mented within the kernel’s SQL schema which represents a

self-organizing ontology. By self-organizing, we refer to the
ability of the kernel to create and augment tables with new
information. This ability accomplishes several key process-
ing capabilities described below.

The operation of the kernel at present is governed by both
class-level and meta level logic. It contains the core set of
rules and interfaces which gets the system up and running.
It is kept separate from meta reasoning, which may be busy
handling various action statements and monitoring hardware
performance. It is also kept separate from reasoning threads
which may involve explicit timing requirements. Figure 3 il-
lustrates the interaction between various types of processes
that contribute to common sense reasoning. We utilize Nu-
ance’s Speech Verifier and Vocalizer to recognize and gen-
erate speech (Nuance 2004). A Penn Treebank parser is
used to process text data that is either extracted directly
from OMICS, or from a statistical grammar model applied
to audible speech. OMICS and Memory data are stored in a
SQL schema and is accessed via a MySQL server (Vaswani
2002). The SQL schema facilitates the binding of memory,
rules, and knowledge to robot functionality.

We define Memory as consisting of the working knowl-
edge which has been instantiated through observation. It
includes a robot’s knowledge about the state of the environ-
ment, knowledge about its own current state (e.g. whether it
is walking or extending an arm), and which room the robot
is currently in. As the robot goes from room to room, obser-
vations about actual object locations are recorded in the state
tables in Memory. These observations are used to update a
statistical-based commonsense representation of object lo-
cations. More work is needed, however, to properly model
this memory for learning in a dynamic environment.

The binding operation across rule bases and components
using tags forms the basis of a self-organizing ontology.
This mechanism is used to identify and assign a prelimi-
nary context to incoming information, learn new informa-
tion, and format OMICS knowledge into logic-based facts
for processing. Particular Al algorithms that need to be used
can be referred to within this ontology and are instantiated
within independent reasoning threads as required. Tags such
as request, query, and inform are assigned to task instruc-
tions based upon keyword references and sentence struc-
ture. Sentence structure is identified by searching through
a database of regular expressions and applying them to the
text. Once a regular expression is satisfied, the associated tag
is identified. Having identified the immediate context, ref-
erences to behavior choices (or responses) are made via the
same tags through a behavior map. When only one choice is
present, the response represents a default assignment. Be-
havior tags and assignments currently originate from the
system designer.

After class and meta-rules configure the system for a par-
ticular action, the action is scheduled via a meta-reasoner.
The meta-reasoner monitors status information generated by
an action control loop. The meta-reasoning thread is respon-
sible for scheduling rule executions bound to particular ac-
tions and noticing anomalies associated with those execu-
tions.

The need to interface reasoning with hardware requires
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Figure 3: Multi-threaded Reasoning System.

multi-threading. Our architecture utilizes two layers of in-
terfacing to access and control various threads. First, each
hardware component (or simulated component) has an ex-
clusive set of JESS rules that are implemented within their
own thread. Secondly, within each thread, the JESS rules
target specific hardware (or simulator) commands that need
to be executed. A reasoning and meta-reasoning thread is
used to manage their execution. The reasoning thread is re-
sponsible for making a decision to refer to a rule for a partic-
ular hardware interface. These references are made through
a two step process that first binds natural language refer-
ences to actions (such as “put”) in the appropriate hardware
thread (arm motion). Then, other context-specific rules uti-
lize the particular configuration information associated with
the action to determine which commands parameters to use.

To illustrate how this architecture is used, we discuss the
sequence of events that unfold when a robot is asked to make
coffee. First, a user’s utterance is translated either into rec-
ognized slot parameters by the speech verifier, or extracted
text. Slot parameters are used when a precise identification
of the utterance is made while text is generated only when a
precise match has not been found. Slot parameters are used
to create a fact that uniquely identifies the speech event. Text
must be processed further by a parser and search algorithm
to determine the most likely speech event. After this event is
identified, a fact is instantiated in the same manner as before.

When a speech fact is instantiated, a behavior tag associ-
ated with the event identifies likely responses. If the system
is in an obedient mode, these responses are executed with-
out further reasoning (default response). In our example, the
system sends back an affirm response: e.g. the system sends
text to the speech vocalizer to inform the user that coffee will
be made. Another class rule triggers the recall of the task
steps associated with making coffee. Then, these steps are
sequenced by a reasoning thread that was instantiated by the
kernel. As each step is carried out, the state changes to ob-
jects are updated in Memory. These updates to Memory are

important for future actions. When the steps are completed,
the reasoning thread is terminated to free up resources.

As required, the reasoner accesses class rules to send facts
to various hardware interfaces for implementation. These
hardware-interface threads are dedicated to specific hard-
ware and continue to operate throughout the robot’s opera-
tion. In our example, facts associated with walking, grab-
bing, and pouring are sent to threads associated with the
legs and hands. These facts are sent via the meta-reasoner
which is responsible for last-chance decision-making as well
as recognizing problems associated with the hardware inter-
faces. In our work so far, we have utilized a graphical ani-
mation utility to simulate hardware interface commands.

Conclusions

We have implemented a reasoning architecture that uses
knowledge in natural language form, collected from dis-
tributed sources. This distributed knowledge does not have
to be carefully hand-crafted as in case of expert systems.
However, distributed knowledge is inherently noisy, so we
use an ontological schema and statistical methods to iden-
tify useful sentence structures. In our current system, we
have about 15 hand-crafted class rules.

We use meta-rules to implement the commonsense that
is required to fill-in missing information handling tasks re-
quests. These rules are common for all household tasks.
In out current system we have about 20 hand-crafted meta-
rules. Meta-rules are also used to model interactions with
humans, manage interactions among multiple actions, and
handle anomalous situations that may arise in the execution
of the tasks. our architecture is used to control a simulated
robot that performs tasks requested by the user.

Although our work is currently limited to performing
tasks in home and office environments, our approach is gen-
eral enough to be used for other domains. Many of the class
rules would be the same, but new distributed knowledge and
class rules can be added as appropriate. The seamless inte-
gration of distributed knowledge, natural language process-
ing, class rules and meta-rules simplifies rule and knowledge
updates and makes our architecture and system scalable.
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